

A New DDH Secure Group for Applications of ElGamal in Cryptographic Voting Protocols

Rolf Haenni Verifiable Voting Workshop, Luxembourg, March 22, 2023

DDH Secure Groups for ElGamal

- ightharpoonup Prime-order subgroup $\mathbb{G}_q\subset \mathbb{Z}_p^*$ of integers modulo p
 - ▶ General case: p = kq + 1, for co-factor $k \ge 2$
 - ▶ Safe prime: p = 2q + 1
- ▶ Prime-order subgroup $E_q \subseteq E[\mathbb{F}_p]$ of elliptic curve over \mathbb{F}_p
- lacktriangle Prime-order subgroup $F_q\subset \mathbb{F}_{p^k}^*$ of polynomials of degree k over \mathbb{F}_p

DDH Secure Groups for ElGamal

- Prime-order subgroup $\mathbb{G}_q \subset \mathbb{Z}_p^*$ of integers modulo p
 - ▶ General case: p = kq + 1, for co-factor $k \ge 2$
 - Safe prime: p = 2q + 1
- ightharpoonup Prime-order subgroup $E_q\subseteq E[\mathbb{F}_p]$ of elliptic curve over \mathbb{F}_p
- lacktriangle Prime-order subgroup $F_q\subset \mathbb{F}_{p^k}^*$ of polynomials of degree k over \mathbb{F}_p

Subgroup of Integers Modulo Safe Prime

▶ The elements of $\mathbb{G}_q \subset \mathbb{Z}_p^*$ modulo p = 2q + 1 are quadratic residues:

$$\mathbb{G}_q = \{x^2 \bmod p : 1 \le x < p\}$$

Example: p = 23, q = 11

 \mathbb{Z}_{23}^*

 \mathbb{G}_{11}

Properties of \mathbb{G}_q

- ▶ All elements of $\mathbb{G}_q \setminus \{1\}$ are generators
 - 3 is always a generator
 - $ightharpoonup 4, 9, 16, 25, \dots$ are always generators
- Subgroup membership
 - Method 1: $x \in \mathbb{G}_q$, iff $x^q \mod p = 1$
 - Method 2: $x \in \mathbb{G}_q$, iff $\left(\frac{x}{p}\right) = 1$
- Quadratic residues vs. quadratic non-residues
 - $ightharpoonup x \in \mathbb{G}_q \text{ implies } p x \not\in \mathbb{G}_q$
 - $\qquad \qquad \mathbf{x} \not \in \mathbb{G}_q \text{ implies } p-x \in \mathbb{G}_q$

Practical Disadvantages of \mathbb{G}_q

- ► Checking group membership is expensive (1×modexp xor 1×Jacobi symbol)
- Group membership depends on p
 - Selecting generators
 - Generating random group elements
- ightharpoonup ElGamal with message space \mathbb{G}_q
 - lacktriangle Mapping $\Gamma:\{0,1\}^n o \mathbb{G}_q$ for general-purpose messages $M\in\{0,1\}^n$ depends on p
 - $lackbox{Mapping }\Gamma:\mathcal{M}
 ightarrow\mathbb{G}_q$ for specific messages $M\in\mathcal{M}$ depends on p
 - ▶ Example: prime number encoding of votes

ightharpoonup Computing absolute values in \mathbb{Z}_p^*

$$abs(x) \stackrel{\text{def.}}{=} \begin{cases} x, & \text{if } 1 \le x \le q \\ p - x, & \text{if } q < x < p \end{cases}$$

▶ Let $\mathbb{Z}_p^+ = \{ abs(x) : x \in \mathbb{Z}_p^* \} = \{1, \dots, q\}$

- ▶ Let $x \circ y = abs(xy \bmod p)$ and $inv(x) = abs(x^{-1} \bmod p)$
- ho $(\mathbb{Z}_p^+,\circ,\mathrm{inv},1)$ forms a group, the group of absolute values modulo p=2q+1

ightharpoonup Computing absolute values in \mathbb{Z}_p^*

$$abs(x) \stackrel{\text{def.}}{=} \begin{cases} x, & \text{if } 1 \le x \le q \\ p - x, & \text{if } q < x < p \end{cases}$$

▶ Let $\mathbb{Z}_p^+ = \{ abs(x) : x \in \mathbb{Z}_p^* \} = \{1, \dots, q\}$

- ▶ Let $x \circ y = abs(xy \bmod p)$ and $inv(x) = abs(x^{-1} \bmod p)$
- ho $(\mathbb{Z}_p^+,\circ,\mathrm{inv},1)$ forms a group, the group of absolute values modulo p=2q+1

ightharpoonup Computing absolute values in \mathbb{Z}_p^*

$$abs(x) \stackrel{\text{def.}}{=} \begin{cases} x, & \text{if } 1 \le x \le q \\ p - x, & \text{if } q < x < p \end{cases}$$

▶ Let $\mathbb{Z}_p^+ = \{ abs(x) : x \in \mathbb{Z}_p^* \} = \{1, \dots, q\}$

- ▶ Let $x \circ y = abs(xy \bmod p)$ and $inv(x) = abs(x^{-1} \bmod p)$
- \triangleright $(\mathbb{Z}_p^+,\circ,\mathrm{inv},1)$ forms a group, the group of absolute values modulo p=2q+1

ightharpoonup Computing absolute values in \mathbb{Z}_p^*

$$abs(x) \stackrel{\text{def.}}{=} \begin{cases} x, \text{ if } 1 \le x \le q \\ p - x, \text{ if } q < x < p \end{cases}$$

- ▶ Let $\mathbb{Z}_p^+ = \{ abs(x) : x \in \mathbb{Z}_p^* \} = \{1, \dots, q\}$
- ▶ Let $x \circ y = abs(xy \bmod p)$ and $inv(x) = abs(x^{-1} \bmod p)$
- lacksquare $(\mathbb{Z}_p^+,\circ,\mathrm{inv},1)$ forms a group, the group of absolute values modulo p=2q+1

Properties of \mathbb{Z}_p^+

- ightharpoonup Exponentiations in \mathbb{Z}_p^+ can be be computed efficiently as $abs(x^y \mod p)$
- ightharpoonup From $|\mathbb{Z}_p^+|=|\mathbb{G}_q|=q$, it follows that \mathbb{Z}_p^+ is isomorphic to \mathbb{G}_q
- ▶ The isomorphism can be computed efficiently in both directions
 - $\phi(x) = x^2 \bmod p$, for $x \in \mathbb{Z}_p^+$
- ightharpoonup Therefore, if DDH is hard in \mathbb{G}_q , it is equally hard in \mathbb{Z}_p^+

Properties of \mathbb{Z}_p^+

- ightharpoonup Exponentiations in \mathbb{Z}_p^+ can be be computed efficiently as $abs(x^y \mod p)$
- ightharpoonup From $|\mathbb{Z}_p^+|=|\mathbb{G}_q|=q$, it follows that \mathbb{Z}_p^+ is isomorphic to \mathbb{G}_q
- ▶ The isomorphism can be computed efficiently in both directions
 - $\phi(x) = x^2 \bmod p$, for $x \in \mathbb{Z}_p^+$
- ▶ Therefore, if DDH is hard in \mathbb{G}_q , it is equally hard in \mathbb{Z}_p^+

Practical Advantages of \mathbb{Z}_p^+ Over \mathbb{G}_q

- ightharpoonup Group membership $x\in\mathbb{Z}_p^+$ can be tested efficiently as $1\leq x\leq q$
- ▶ Since p < p' implies $\mathbb{Z}_p^+ \subset \mathbb{Z}_{p'}^+$, it follows that:
 - $ightharpoonup 1, 2, 3, 4, 5, \dots$ are always group elements,
 - \blacktriangleright 1, 2, 3, 4, 5, . . . are possible random group elements,
 - \triangleright 2, 3, 4, 5, 6, . . . are always generators,

independently of p

- General-purpose messages $M \in \{0,1\}^n$ can be mapped into \mathbb{Z}_p^+ by interpreting them as binary numbers (except for 0)
- ightharpoonup For specific messages, $\Gamma:\mathcal{M} o\mathbb{Z}_p^+$ can be defined independently of p

Conclusion

- ightharpoonup From a security perspective, \mathbb{Z}_p^+ and \mathbb{G}_q are equivalent (DDH holds)
- ▶ Group operation in \mathbb{Z}_p^+ is slightly less efficient (but the cost is negligible)
- ightharpoonup Membership tests in \mathbb{Z}_p^+ are much more efficient
- Plus some other practical advantages
- General recommendation:

Use \mathbb{Z}_p^+ instead of \mathbb{G}_q in applications and implementations of ElGamal

Conclusion

- ightharpoonup From a security perspective, \mathbb{Z}_p^+ and \mathbb{G}_q are equivalent (DDH holds)
- ▶ Group operation in \mathbb{Z}_p^+ is slightly less efficient (but the cost is negligible)
- ightharpoonup Membership tests in \mathbb{Z}_p^+ are much more efficient
- Plus some other practical advantages
- General recommendation:

Use \mathbb{Z}_p^+ instead of \mathbb{G}_q in applications and implementations of ElGamal