
Performance of Shuffling: Taking it

to the Limits

Rolf Haenni, Philipp Locher
Voting’20 @ FC’20, Kota Kinabalu, February 14, 2020

1/26



Outline

Introduction

Optimization Techniques

Application to Wikström’s Shuffle Proof

Conclusion

2/26



Motivation

Voting protocols often depend on verifiable re-encryption
mix-nets

For large electorates, mixing the submitted encrypted votes
may become a performance bottleneck

Example:

N = 100 000 ciphertexts, m = 4 mix nodes
10N = 1 000 000 exponentiations per mix node (Wikström)
40N = 40 000 000 exponentiations in total
Similar for proof verification

Assuming that modular exponentiation takes 9 milliseconds
for 3072-bits numbers, we get 10 hours of computation

3/26



Outline

Introduction

Optimization Techniques

Application to Wikström’s Shuffle Proof

Conclusion

4/26



General Exponentiation

Group (G, ·,−1 , 1) of order q

On inputs b ∈ G and e ∈ Zq, compute

z = Exp(b, e) = be

Exponent size: ` = log2 e

Sliding-Window Algorithm: 1 ≤ k ≤ ` (window size)

Multiplications 112 128 224 256 2048 3072

Mk(`) = 2k−1 + `+
`

k + 2
k = 3 k = 4 k = 6 k = 7

Example: M7(3072) = 3477

5/26



Product Exponentiation

On inputs b = (b1, . . . , bN) ∈ GN and e = (e1, . . . , eN) ∈ ZN,
compute

z = ProductExp(b, e) =
n∏

i=1

beii

Maximal exponent size: ` = maxNi=1 log2 ei

Algorithm 2 from last year’s paper: 1 ≤ m ≤ N (subtask size)

Multiplications 112 128 224 256 2048 3072

M̃m(`,N) =
2m + `

m
+
`

N
m = 5 m = 6 m = 9

Example: M̃9(3072, large N) = 396

Relative speedup: 8.8

6/26



Fixed-Base Exponentiation

On inputs b ∈ G and e = (e1, . . . , eN) ∈ ZN , compute

z = FixedBaseExp(b, e) = (be1 , . . . , beN )

Maximal exponent size: ` = maxNi=1 log2 ei

Algorithm 3.2 from last year’s paper: 1 ≤ k ≤ `, 1 ≤ m ≤ `/k

M̃k,m(`,N) =
`

N

(
2m

km
+ 1

)
+

`

m
+ k

Examples:

M̃32,12(3072, 1000) = 320 (relative speedup: 10.7)

M̃19,18(3072, 100 000) = 210 (relative speedup: 16.6)

M̃11,20(3072, 1 000 000) = 176 (relative speedup: 19.8)

7/26



Batch Verification: General Case

On inputs z = (z1, . . . , zN), b = (b1, . . . , bN), e = (e1, . . . , eN),
compute

BatchVerif(z,b, e) =
N∧
i=1

[
zi = beii

]
∈ {0, 1}

Small Exponent Test (SET):

Pick s-bits values si ∈R {0, . . . , 2s − 1} at random
Compute `-bits values s ′i = siei mod q
Let s = (s1, . . . , sN), s′ = (s ′1, . . . , s

′
N)

Perform the following check:

ProductExp(z, s)
?
= ProductExp(b, s′)

Failure probability: P(∃ zi 6= beii ) = 2−s

Pre-conditions: prime-order q, group membership zi ∈ G

8/26



Batch Verification: Special Cases

For fixed base b = (b, . . . , b), s ′ =
∑N

i=1 s
′
i mod q, check

ProductExp(z, s)
?
= Exp(b, s ′)

For fixed exponent e = (e, . . . , e), check

ProductExp(z, s)
?
= Exp(ProductExp(b, s), e)

Example: ` = 3072 and s = 128

30 multiplications for ProductExp(·, s)
396 multiplications for ProductExp(·, s′)
3477/N mulitplications for Exp(·, s ′) and Exp(·, e)

General Case Fixed Base Fixed Exponent

426 30 + 3477/N 60 + 3477/N

9/26



Group Membership Tests (GMT)

General group: z ∈ G iff zq = 1

Integers modulo prime p: z ∈ Z∗p iff

z ∈ {1, . . . , p − 1}

Elliptic curve: z = (x , y) ∈ E (Fp) iff

x , y ∈ {0, . . . , p − 1} and y2 = x3 + ax + b

Quadratic residues modulo p = 2q + 1: z ∈ Gq iff(
z

p

)
= 1

Remark: for ` = 3072, computing the Jacobi symbol is approx.
20 times faster than exponentiation

10/26



GMT using Square Root Witnesses

For p = 2q + 1, every z ∈ Gq has exactly two square roots√
z = ± x

q+1
2 mod p, whereas x 6∈ Gq has no square roots

By presenting
√
x as a group membership witness for x ,

x ∈ Gq can be tested using a single multiplication

Therefore, representing elements x ∈ Gq by pairs x̂ = (
√
x , x)

enables an efficient membership test for Gq

Note that group operations can be conducted on the square
roots modulo p:

√
xy =

√
x
√
y ,
√
xe =

√
x
e
,
√
x−1 =

√
x
−1

By computing x in x̂ = (
√
x , x) lazily (only when needed),

GMT in Gq ⊂ Z∗p comes at almost no cost

11/26



Outline

Introduction

Optimization Techniques

Application to Wikström’s Shuffle Proof

Conclusion

12/26



Re-Encryption Shuffle

Parameters: security strength λ, group size ` (bits)

Two inputs:

e = input list of (ElGamal) ciphertexts

pk = encryption public key

Two outputs:

ẽ = permuted list of re-encrypted ciphertexts

π = non-interative zero-knowledge proof

Three main algorithms:

(ẽ, r̃, ψ)← GenShuffle(e, pk)

π ← GenProof(e, ẽ, r̃, ψ, pk)

true/false ← CheckProof(π, e, ẽ, pk)

13/26



Wikström’s Shuffle Algorithms

14/26



Overview of Modular Exponentiations

PLE = plain, PRE = product, FBE = fixed-base, GMT = group membership

15/26



Overview of Modular Exponentiations

16/26



Performance Improvement

λ = 128, ` = 3072 bits

17/26



Performance Improvement

λ = 128, ` = 3072 bits

17/26



Performance Improvement

λ = 128, ` = 256 bits

18/26



Performance Improvement

λ = 128, ` = 256 bits

18/26



Overview of Modular Exponentiations

PLE = plain, PRE = product, FBE = fixed-base, GMT = group membership

19/26



Overview of Modular Exponentiations

PLE = plain, PRE = product, FBE = fixed-base, GMT = group membership

19/26



Overview of Modular Exponentiations

PLE = plain, PRE = product, FBE = fixed-base, GMT = group membership

19/26



Improving GenProof

Line 11 of GenProof:

Raising the recursion to the exponent by Ri = r̂i + ũiRi−1 and
Ui = ũiUi−1 implies

ĉi = g r̂i · ĉ ũi
i−1 = g r̂i · (gRi−1 · hUi−1)ũi = g r̂i+ũiRi−1 · hũiUi−1

= gRi · hUi

For R0 = 0 and U0 = 1, we get ĉ0 = h (see Line 8)

Line 15 of GenProof:

t̂i = g ω̂i · ĉ ω̃i
i−1 = g ω̂i · (gRi−1 · hUi−1)ω̃i = g ω̂i+ω̃iRi−1 · hω̃iUi−1

20/26



Overview of Modular Exponentiations

21/26



Overview of Modular Exponentiations

21/26



Overview of Modular Exponentiations

21/26



Improving CheckProof

The only purpose of the values t̂ ′i in Line 13 of CheckProof is
to compare them with the given values t̂i in Line 19

These tests can be conducted using a mix of batch verification
techniques

t̂i
?
= ĉ c

i · g ŝi · ĉ s̃i

i�1
<latexit sha1_base64="fomeSECwvcB1GxU09zkTEPAmB1Y=">AAACO3icbZBLS8NAFIUnvq2vqks3g0VwoSWpgm7EghuXFWwrmFomk9t0cPJg5kYoIT/NjSv/gms3Im4U3Dtp48LHXZ2c72S493iJFBpt+8mamp6ZnZtfWKwsLa+srlXXNzo6ThWHNo9lrK48pkGKCNooUMJVooCFnoSud3tW8O4dKC3i6BJHCfRCFkRiIDhDY/WrrjtkmGHeF65Gxm8VyOw0z05yOgbcgJvM3eO5y/0YaWA+Cl8bv7S+c5nYd3KDUUgfJoF+tWbX7fHQv8IpRY2U0+pXH10/5mkIEXLJtL527AR7mWcOApVX3FRDYpZkAWQs1HoUejndCRkO9W9WmP+x6xQHx71MREmKEHETMWyQSooxLfqhvlDAUY6MYFwJFJzyIVOMo2mx4k5WQQgTycwD7E4E4yaLXWKpjY8jSmnFnO78PvSv6DTqzkG9cXFYa+6VJSyQLbJNdolDjkiTnJMWaRNOHsgLeScf1r31bL1ab5PolFX+s0l+jPX5BVhQsTo=</latexit>

Fixed Exponent Fixed Base General Case

22/26



Performance Improvement

λ = 128, ` = 3072 bits

23/26



Performance Improvement

λ = 128, ` = 3072 bits

23/26



Performance Improvement

λ = 128, ` = 3072 bits

23/26



Performance Improvement

λ = 128, ` = 256 bits

24/26



Performance Improvement

λ = 128, ` = 256 bits

24/26



Performance Improvement

λ = 128, ` = 256 bits

24/26



Outline

Introduction

Optimization Techniques

Application to Wikström’s Shuffle Proof

Conclusion

25/26



Conclusion

Product and fixed-base exponentiation algorithms improve the
performance by approx. one order of magnitude

Batch verification algorithms improve the performance by one
(general case) respectively two (fixed base/exponent) orders
of magnitude

Using square root witnesses, group membership in Gq ⊂ Z∗p
can be tested at almost no cost

Applying these techniques to Wikström’s shuffle proof
improves the overall performance by approx. one order of
magnitude

26/26


	Introduction
	Optimization Techniques
	Application to Wikström's Shuffle Proof
	Conclusion

