

Performance of Shuffling: Taking it to the Limits

Rolf Haenni, Philipp Locher Voting'20 @ FC'20, Kota Kinabalu, February 14, 2020

- Optimization Techniques
- Application to Wikström's Shuffle Proof

Conclusion

Motivation

- Voting protocols often depend on verifiable re-encryption mix-nets
- For large electorates, mixing the submitted encrypted votes may become a performance bottleneck
- Example:
 - > $N = 100\,000$ ciphertexts, m = 4 mix nodes
 - > $10N = 1\,000\,000$ exponentiations per mix node (Wikström)
 - > $40N = 40\,000\,000$ exponentiations in total
 - Similar for proof verification
- Assuming that modular exponentiation takes 9 milliseconds for 3072-bits numbers, we get 10 hours of computation

Optimization Techniques

Application to Wikström's Shuffle Proof

Conclusion

General Exponentiation

▶ Group
$$(\mathcal{G},\cdot,^{-1},1)$$
 of order q

▶ On inputs $b \in \mathcal{G}$ and $e \in \mathbb{Z}_q$, compute $z = \mathsf{Exp}(b, e) = b^e$

Exponent size:
$$\ell = \log_2 e$$

▶ Sliding-Window Algorithm: $1 \le k \le \ell$ (window size)

Multiplications	112	128	224	256	2048	3072
$M_k(\ell) = 2^{k-1} + \ell + \frac{\ell}{k+2}$	k =	= 3	<i>k</i> =	= 4	<i>k</i> = 6	<i>k</i> = 7

• Example:
$$M_7(3072) = 3477$$

Product Exponentiation

• On inputs $\mathbf{b} = (b_1, \dots, b_N) \in \mathcal{G}^N$ and $\mathbf{e} = (e_1, \dots, e_N) \in \mathbb{Z}^N$, compute $z = \operatorname{ProductExp}(\mathbf{b}, \mathbf{e}) = \prod_{i=1}^{n} b^{e_i}$

$$z = \mathsf{ProductExp}(\mathbf{b}, \mathbf{e}) = \prod_{i=1}^{e_i} b_i^{e_i}$$

> Maximal exponent size: $\ell = \max_{i=1}^{N} \log_2 e_i$

▶ Algorithm 2 from last year's paper: $1 \le m \le N$ (subtask size)

Multiplications	112	128	224	256	2048	3072
$\widetilde{M}_m(\ell, N) = rac{2^m + \ell}{m} + rac{\ell}{N}$	<i>m</i> =	= 5	<i>m</i> =	= 6	<i>m</i> =	= 9

- Example: $\widetilde{M}_9(3072, \text{large } N) = 396$
- Relative speedup: 8.8

Fixed-Base Exponentiation

• Maximal exponent size: $\ell = \max_{i=1}^{N} \log_2 e_i$

► Algorithm 3.2 from last year's paper: $1 \le k \le \ell$, $1 \le m \le \ell/k$ $\widetilde{M}_{k,m}(\ell, N) = \frac{\ell}{N} \left(\frac{2^m}{km} + 1\right) + \frac{\ell}{m} + k$

Examples:

 $\widetilde{M}_{32,12}(3072, 1000) = 320$ (relative speedup: 10.7) $\widetilde{M}_{19,18}(3072, 100\,000) = 210$ (relative speedup: 16.6) $\widetilde{M}_{11,20}(3072, 1\,000\,000) = 176$ (relative speedup: 19.8)

Batch Verification: General Case

• On inputs $\mathbf{z} = (z_1, \dots, z_N)$, $\mathbf{b} = (b_1, \dots, b_N)$, $\mathbf{e} = (e_1, \dots, e_N)$, compute

$$\mathsf{BatchVerif}(\mathbf{z}, \mathbf{b}, \mathbf{e}) = \bigwedge_{i=1}^{n} \left[z_i = b_i^{e_i} \right] \in \{0, 1\}$$

Small Exponent Test (SET):

- ▶ Pick *s*-bits values $s_i \in_R \{0, ..., 2^s 1\}$ at random
- Compute ℓ -bits values $s'_i = s_i e_i \mod q$
- ▶ Let $\mathbf{s} = (s_1, ..., s_N)$, $\mathbf{s}' = (s'_1, ..., s'_N)$

Perform the following check:

$$\mathsf{ProductExp}(\mathbf{z}, \mathbf{s}) \stackrel{?}{=} \mathsf{ProductExp}(\mathbf{b}, \mathbf{s}')$$

- ▶ Failure probability: $P(\exists z_i \neq b_i^{e_i}) = 2^{-s}$
- ▶ Pre-conditions: prime-order q, group membership $z_i \in G$

Batch Verification: Special Cases

For fixed base
$$\mathbf{b} = (b, \dots, b)$$
, $s' = \sum_{i=1}^{N} s'_i \mod q$, check
ProductExp $(\mathbf{z}, \mathbf{s}) \stackrel{?}{=} \operatorname{Exp}(b, s')$

• Example: $\ell = 3072$ and s = 128

- > 30 multiplications for $ProductExp(\cdot, \mathbf{s})$
- > 396 multiplications for ProductExp (\cdot, \mathbf{s}')
- > 3477/N mulitplications for $Exp(\cdot, s')$ and $Exp(\cdot, e)$

General Case	Fixed Base	Fixed Exponent
426	30 + 3477/ <i>N</i>	60 + 3477/N

Group Membership Tests (GMT)

▶ General group:
$$z \in G$$
 iff $z^q = 1$

▶ Integers modulo prime $p: z \in \mathbb{Z}_p^*$ iff $z \in \{1, \dots, p-1\}$

▶ Elliptic curve:
$$z = (x, y) \in E(\mathbb{F}_p)$$
 iff
 $x, y \in \{0, ..., p-1\}$ and $y^2 = x^3 + ax + b$

• Quadratic residues modulo p = 2q + 1: $z \in \mathbb{G}_q$ iff $\left(rac{z}{p}
ight) = 1$

<u>Remark</u>: for $\ell = 3072$, computing the Jacobi symbol is approx. 20 times faster than exponentiation

GMT using Square Root Witnesses

- ▶ For p = 2q + 1, every $z \in \mathbb{G}_q$ has exactly two square roots $\sqrt{z} = \pm x^{\frac{q+1}{2}} \mod p$, whereas $x \notin \mathbb{G}_q$ has no square roots
- ▶ By presenting \sqrt{x} as a group membership witness for x, $x \in \mathbb{G}_q$ can be tested using a single multiplication
- ▶ Therefore, representing elements $x \in \mathbb{G}_q$ by pairs $\hat{x} = (\sqrt{x}, x)$ enables an efficient membership test for \mathbb{G}_q
- Note that group operations can be conducted on the square roots modulo p:

$$\sqrt{xy} = \sqrt{x}\sqrt{y}, \quad \sqrt{x^e} = \sqrt{x}^e, \quad \sqrt{x^{-1}} = \sqrt{x}^{-1}$$

By computing x in x̂ = (√x, x) lazily (only when needed), GMT in 𝔅_q ⊂ ℤ^{*}_p comes at almost no cost

- Optimization Techniques
- Application to Wikström's Shuffle Proof

Conclusion

Re-Encryption Shuffle

> Parameters: security strength λ , group size ℓ (bits)

Two inputs:

 $\mathbf{e} = \text{input list of (ElGamal) ciphertexts}$ pk = encryption public key

Two outputs:

 $\tilde{\mathbf{e}}$ = permuted list of re-encrypted ciphertexts π = non-interative zero-knowledge proof

Three main algorithms:

 $(\tilde{\mathbf{e}}, \tilde{\mathbf{r}}, \psi) \leftarrow \text{GenShuffle}(\mathbf{e}, pk)$ $\pi \leftarrow \text{GenProof}(\mathbf{e}, \tilde{\mathbf{e}}, \tilde{\mathbf{r}}, \psi, pk)$ $true/false \leftarrow \text{CheckProof}(\pi, \mathbf{e}, \tilde{\mathbf{e}}, pk)$

Wikström's Shuffle Algorithms

1 Algorithm: GenShuffle (e, pk)	1 Algorithm: GenProof $(e, \tilde{e}, \tilde{r}, \psi, pk)$
Input: ElGamal ciphertexts $e = (e_1,, e_N)$, $e_i = (a_i, b_i) \in G^*$ Encountries has $e_i \in G$.	Input: ElGamal ciphertexts $e = (e_1,, e_N)$, $e_i = (a_i, b_i) \in G^2$
Encryption Key $pk \in \mathcal{G}$	Shuffled ElGamal ciphertexts $e = (e_1,, e_N)$, $e_i = (a_i, b_i) \in \mathcal{G}^*$ Be anometican reardomizations $\tilde{e} = (\tilde{e}_1,, \tilde{e}_N)$, $\tilde{e}_i \in \mathbb{Z}$
a for $i = 1, \dots, N$ do	Permutation $\psi = (i_1, \dots, i_N)$, $i_i \in \mathbb{Z}_q$
$i = \tilde{r}_i \in R \mathbb{Z}_q$	Encryption key $pk \in G$
$\tilde{a}_i \leftarrow a_i \cdot pk^{\tilde{r}_i}$	2 for $i = 1,, N$ do
$s = \tilde{b}_i \leftarrow b_i \cdot g^{r_i}$	$r_{j_i} \in R \mathbb{Z}_q$
$\tau = \tilde{e}_i \leftarrow (\tilde{a}_i, \tilde{b}_i)$	$_{4} \left\lfloor \begin{array}{c} c_{j_{1}} \leftarrow h_{i} \cdot g^{r_{j_{1}}} \end{array} \right.$
$s \ \tilde{e} \leftarrow (\tilde{e}_{j_1}, \dots, \tilde{e}_{j_N})$	$s c = (c_1, \dots, c_N)$
$\circ \mathbf{r} \leftarrow (r_1, \dots, r_N)$	6 IOF $i = 1, \dots, N$ do
10 return (e, r, ψ) // $e \in (\mathcal{G}^*)^{\circ}$, $r \in \mathbb{Z}_q^{\circ}$, $\psi \in \Psi_N$	$\gamma = u_i \leftarrow Hash((e, e, c), i)$
	$s c_0 \leftarrow h$
Algorithm: CheckProof(π, e, \tilde{e}, pk)	\hat{v} for $i = 1, \dots, N$ do
Input: Shuffle proof $\pi = (t, s, c, \hat{c})$	$i = i \in \mathbb{R}^{d_1} + c_{i_1}^{d_1}$
$-t = (t_1, t_2, t_3, (t_{4,1}, t_{4,2}), (\hat{t}_1, \dots, \hat{t}_N)) \in \mathcal{G} \times \mathcal{G} \times \mathcal{G} \times \mathcal{G}^2 \times \mathcal{G}^N$	
$- s = (s_1, s_2, s_3, s_4, (\hat{s}_1,, \hat{s}_N), (\hat{s}_1,, \hat{s}_N)) \in \mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q \times \mathbb{Z}_q^N \times \mathbb{Z}_q^N$	$12 c = (c_1,, c_N)$
$-c = (c_1,, c_N) \in G^N, \hat{c} = (\hat{c}_1,, \hat{c}_N) \in G^N$	$\hat{\mu} = \hat{\mu} + $
ElGamal ciphertextes $e = (e_1, \dots, e_N)$, $e_i = (a_i, b_i) \in \mathcal{G}^*$	$t = t = c_1 = c_1 = c_1 = c_1$ $t = c_1 = c_1 = c_1 = c_1$
Snuffied ElGamai cipnertexts $e = (e_1,, e_N)$, $e_i = (a_i, b_i) \in \mathcal{G}^*$ Encryption key $nk \in \mathcal{G}$	
a for $i = 1,, N$ do	16 $\omega_1 \in R \&_q$, $\omega_2 \in R \&_q$, $\omega_3 \in R \&_q$, $\omega_4 \in R \&_q$ $17 t_1 \leftarrow a^{\omega_1}$
$u_i \leftarrow Hash((e, \tilde{e}, c), i)$	$1 s t_2 \leftarrow q^{\omega_2}$
$a \hat{p}_0 \leftarrow h$	$1_{12} t_2 \leftarrow g^{\omega_3} \cdot \prod^N, h^{\tilde{\omega}_4}$
$s \bar{c} \leftarrow \prod_{i=1}^{N} c_i / \prod_{i=1}^{N} h_i$	$_{20} t_{4,1} \leftarrow pk^{-\omega_4} \prod_{i=1}^{N} \tilde{a}_i^{\omega_i}$
$u \leftarrow \prod_{i=1}^{N} u_i \mod q$	$_{21}$ $t_{4,2} \leftarrow q^{-\omega_4} \cdot \prod_{i=1}^{N-1} \tilde{b}^{\tilde{\omega}_i}$
$\tau \hat{c} \leftarrow \hat{c}_N \cdot \hat{h}^{-u}$	$_{22} t \leftarrow (t_1, t_2, t_3, (t_{4,1}, t_{4,2}), (\hat{t}_1, \dots, \hat{t}_N))$
$s \tilde{c} \leftarrow \prod_{i=1}^{N} c_i^{u_i}$	$c \leftarrow Hash(e, \tilde{e}, c, \hat{c}, pk, t)$
$\circ \tilde{a} \leftarrow \prod_{i=1}^{N} a_i^{u_i}$	$_{24} v_N \leftarrow 1$
$10 \tilde{b} \leftarrow \prod_{i=1}^{N} b_i^{u_i}$	25 for $i = N,, 1$ do
$c \leftarrow Hash(e, \tilde{e}, c, \hat{c}, pk, t)$	$v_{i-1} \leftarrow \tilde{u}_i v_i \mod q$
12 for $i = 1,, N$ do	$_{27} r \leftarrow \sum_{i=1}^{N} r_i \mod q, s_1 \leftarrow \omega_1 - c \cdot r \mod q$
$\overset{13}{\sqsubseteq} t_i \leftarrow c_i \cdot g \cdot \cdot c_{i-1}$	28 $\hat{r} \leftarrow \sum_{i=1}^{N} \hat{r}_i v_i \mod q$, $s_2 \leftarrow \omega_2 - c \cdot \hat{r} \mod q$
$ \underset{i \neq f}{\overset{14}{=}} t_i + c^* \cdot g^{*i} $	$_{29} \bar{r} \leftarrow \sum_{i=1}^{n} r_i u_i \mod q, s_3 \leftarrow \omega_3 - c \cdot \bar{r} \mod q$
$\lim_{t \to 0} \frac{t_i}{t_i} = \frac{z_i}{z_i} \frac{z_i}{z_i} \frac{z_i}{z_i} \frac{z_i}{z_i} \frac{1}{z_i} $	$1_{30} \tilde{r} \leftarrow \sum_{i=1}^{n} \tilde{r}_i u_i \mod q, s_4 \leftarrow \omega_4 - c \cdot \tilde{r} \mod q$
$r_{i} r_{i} r_{i} = r_{i} r_$	as for $i = 1, \dots, N$ do
$1_{1i} t'_{i,0} \leftarrow \tilde{h}^c \cdot a^{-s_4} \cdot \prod^N \tilde{h}^{\tilde{s}_1}$	$ _{32} = _{s_i} \leftarrow \omega_i - c \cdot r_i \mod q, s_i \leftarrow \omega_i - c \cdot u_i \mod q$
19 return	$(33 \ s \leftarrow (s_1, s_2, s_3, s_4, (s_1, \dots, s_N), (s_1, \dots, \bar{s}_N)))$
$(t_1 = t'_1) \land (t_2 = t'_2) \land (t_3 = t'_2) \land (t_{1,2} = t'_{1,2}) \land (t_{1,2} = t'_{1,2}) \land \left[\Lambda^N (\hat{t}_1 = \hat{t}'_1) \right]$	$34 \pi \leftarrow (\iota, s, c, c)$ $= a - t - (\iota, s, c, c)$ $= a - t - (\iota, s, c, c)$ $= a - t - (\iota, s, c, c)$ $= a - t - (\iota, s, c, c)$ $= a - t - (\iota, s, c, c)$
$(v_1 - v_1) + (v_2 - v_2) + (v_3 - v_3) + (v_{4,1} - v_{4,1}) + (v_{4,2} - v_{4,2}) + [N_{i=1}(v_i - v_i)]$	122 Lernus $x \in (A \times A \times A \times A \times A) \times (\pi^d \times \pi^d \times \pi^d \times \pi^d \times \pi^d) \times A_{\ldots} \times A_{\ldots}$

Algonithm	Line	Computation	PI	ĹΕ	PRE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	l	b	GMT
GenShuffle	1a	$(a_i, b_i) \in \mathcal{G}^2$	-	-	_	-	_	2N
	1b	$pk \in \mathcal{G}$	-	-	_	-	_	1
	5	$\tilde{a}_i \leftarrow a_i \cdot pk^{\tilde{r}_i}$	-	-	_	N	pk	_
	6	$\tilde{b}_i \leftarrow b_i \cdot g^{\tilde{r}_i}$	-	-	_	N	g	_
GenProof	4	$c_{j_i} \leftarrow h_i \cdot g^{r_{j_i}}$	-	-	—	N	g	_
	11	$\hat{c}_i \leftarrow g^{\hat{r}_i} \cdot \hat{c}_{i-1}^{\tilde{u}_i}$	-	N	_	N	g	_
	15	$\hat{t}_i \leftarrow g^{\hat{\omega}_i} \cdot \hat{c}_{i-1}^{\tilde{\omega}_i}$	N	-	_	N	g	—
	17	$t_1 \leftarrow g^{\omega_1}$	-	-	_	1	g	_
	18	$t_2 \leftarrow g^{\omega_2}$	-	-	_	1	g	_
	19	$t_3 \leftarrow g^{\omega_3} \cdot \prod_{i=1}^N h_i^{\tilde{\omega}_i}$	-	-	N	1	g	_
	20	$t_{4,1} \leftarrow pk^{-\omega_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{\omega}_i}$	-	-	N	1	pk	—
	21	$t_{4,2} \leftarrow g^{-\omega_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{\omega}_i}$	-	-	N	1	g	_
Total	10N + 5					2N + 1		

Algorithm	Line	Computation	PI	ΓE	PI	RE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	λ	l	b	GMT
CheckProof	1a	$t\in \mathcal{G}\times \mathcal{G}\times \mathcal{G}\times \mathcal{G}^2\times \mathcal{G}^N$	_	_	_	_	-	_	N+5
	1b	$oldsymbol{c}\in\mathcal{G}^{N}, \hat{oldsymbol{c}}\in\mathcal{G}^{N}$	-	_	_	_	-	—	2N
	1c	$(a_i, b_i) \in \mathcal{G}^2, (\tilde{a}_i, \tilde{b}_i) \in \mathcal{G}^2$	-	_	_	-	-	-	4N
	1d	$pk \in \mathcal{G}$	-	-	—	-	-	-	1
	7	$\hat{c} \leftarrow \hat{c}_N \cdot h^{-u}$	-	-	-	-	1	h	-
	8	$\tilde{c} \leftarrow \prod_{i=1}^{N} c_i^{u_i}$	-	-	_	N	-	-	-
	9	$\tilde{a} \leftarrow \prod_{i=1}^{N} a_i^{u_i}$	-	_	_	N	-	-	-
	10	$\tilde{b} \leftarrow \prod_{i=1}^{N} b_i^{u_i}$	-	_	_	N	-	-	_
	13	$\hat{t}'_i \leftarrow \hat{c}^{c}_i \cdot g^{\hat{s}_i} \cdot \hat{c}^{\tilde{s}_i}_{i-1}$	N	N	-	-	N	g	-
	14	$t_1' \leftarrow \bar{c}^{c} \cdot g^{s_1}$	-	1	-	-	1	g	-
	15	$t_2' \leftarrow \hat{c}^c \cdot g^{s_2}$	-	1	-	-	1	g	-
	16	$t'_3 \leftarrow \tilde{c}^c \cdot g^{s_3} \cdot \prod_{i=1}^N h_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
	17	$t'_{4,1} \leftarrow \tilde{a}^c \cdot pk^{-s_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{s}_i}$	-	1	N	-	1	pk	—
	18	$t'_{4,2} \leftarrow \tilde{b}^c \cdot g^{-s_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{s}_i}$	-	1	N	-	1	g	—
Total					9N	+ 11			7N + 6

Ν	timized	Pa	rtly og					
Gene	rate	Verify		Gene	erate	rate Verify		N
31622	1.00	18221	1.00	6742	0.21	5406	0.30	100
31465	1.00	18027	1.00	6264	0.20	5233	0.29	1000
31450	1.00	18007	1.00	5971	0.19	5162	0.29	10000
31448	1.00	18007	1.00	5782	0.18	5117	0.28	100 000
31448	1.00	18005	1.00	5640	0.18	5083	0.28	1000000

 $\lambda=$ 128, $\ell=$ 3072 bits

N	Not optimized				rtly o	ed		
Gene	rate	Verify		Generate		Verify		N
31622	1.00	18221	1.00	6742	0.21	5406	0.30	100
31465	1.00	18027	1.00	6264	0.20	5233	0.29	1 000
31450	1.00	18007	1.00	5971	0.19	5162	0.29	10000
31448	1.00	18007	1.00	5782	0.18	5117	0.28	100000
31448	1.00	18005	1.00	5640	0.18	5083	0.28	1000000

 $\lambda=$ 128, $\ell=$ 3072 bits

Ν	Not op	timized	1	Pε	artly of	zed						
Generate		Ver	ify	Generate		Generate		Generate		Ve	rify	N
2926	1.00	2184	1.00	822	0.28	768	0.35	100				
2913	1.00	2161	1.00	763	0.26	742	0.34	1 000				
2911	1.00	2158	1.00	725	0.25	731	0.34	10000				
2911	1.00	2158	1.00	699	0.24	725	0.33	100000				
2911	1.00	2158	1.00	683	0.23	721	0.33	1000000				

$$\lambda=$$
 128, $\ell=$ 256 bits

N	Not op	Pa	artly of					
Gene	erate	Ver	ify	Generate		Verify		N
2926	1.00	2184	1.00	822	0.28	768	0.35	100
2913	1.00	2161	1.00	763	0.26	742	0.34	1000
2911	1.00	2158	1.00	725	0.25	731	0.34	10000
2911	1.00	2158	1.00	699	0.24	725	0.33	100000
2911	1.00	2158	1.00	683	0.23	721	0.33	1000000

$$\lambda=$$
 128, $\ell=$ 256 bits

Algonithm	Line	Computation	PI	ĹΕ	PRE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	l	b	GMT
GenShuffle	1a	$(a_i, b_i) \in \mathcal{G}^2$	-	-	_	-	_	2N
	1b	$pk \in \mathcal{G}$	-	-	_	-	_	1
	5	$\tilde{a}_i \leftarrow a_i \cdot pk^{\tilde{r}_i}$	-	-	_	N	pk	_
	6	$\tilde{b}_i \leftarrow b_i \cdot g^{\tilde{r}_i}$	-	-	_	N	g	_
GenProof	4	$c_{j_i} \leftarrow h_i \cdot g^{r_{j_i}}$	-	-	—	N	g	_
	11	$\hat{c}_i \leftarrow g^{\hat{r}_i} \cdot \hat{c}_{i-1}^{\tilde{u}_i}$	-	N	_	N	g	_
	15	$\hat{t}_i \leftarrow g^{\hat{\omega}_i} \cdot \hat{c}_{i-1}^{\tilde{\omega}_i}$	N	-	_	N	g	—
	17	$t_1 \leftarrow g^{\omega_1}$	-	-	_	1	g	_
	18	$t_2 \leftarrow g^{\omega_2}$	-	-	_	1	g	_
	19	$t_3 \leftarrow g^{\omega_3} \cdot \prod_{i=1}^N h_i^{\tilde{\omega}_i}$	-	-	N	1	g	_
	20	$t_{4,1} \leftarrow pk^{-\omega_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{\omega}_i}$	-	-	N	1	pk	—
	21	$t_{4,2} \leftarrow g^{-\omega_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{\omega}_i}$	-	-	N	1	g	_
Total	10N + 5					2N + 1		

Algonithm	Line	Computation	PI	LΕ	PRE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	l	b	GMT
GenShuffle	1a	$(a_i, b_i) \in \mathcal{G}^2$	-	-	_	-	_	2N
	1b	$pk \in \mathcal{G}$	-	-	_	-	_	1
	5	$\tilde{a}_i \leftarrow a_i \cdot pk^{\tilde{r}_i}$	-	-	_	N	pk	_
	6	$\tilde{b}_i \leftarrow b_i \cdot g^{\tilde{r}_i}$	-	-	_	N	g	_
GenProof	4	$c_{j_i} \leftarrow h_i \cdot g^{r_{j_i}}$	-	_	—	N	g	_
	11	$\hat{c}_i \leftarrow g^{\hat{r}_i} \cdot \hat{c}_{i-1}^{\tilde{u}_i}$	_ (N) –	N	g	—
	15	$\hat{t}_i \leftarrow g^{\hat{\omega}_i} \cdot \hat{c}_{i-1}^{\tilde{\omega}_i} \tag{6}$	N) -	—	N	g	_
	17	$t_1 \leftarrow g^{\omega_1}$	-	-	_	1	g	_
	18	$t_2 \leftarrow g^{\omega_2}$	-	-	_	1	g	_
	19	$t_3 \leftarrow g^{\omega_3} \cdot \prod_{i=1}^N h_i^{\tilde{\omega}_i}$	-	-	N	1	g	-
	20	$t_{4,1} \leftarrow pk^{-\omega_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{\omega}_i}$	-	-	N	1	pk	-
	21	$t_{4,2} \leftarrow g^{-\omega_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{\omega}_i}$	-	-	N	1	g	_
Total	10N + 5					2N + 1		

Algorithm	Lino	Computation	PI	LE	PRE	FI	ЗE	СМТ
Algorithm	Line	Computation	l	λ	l	l	b	GMT
GenShuffle	1a	$(a_i, b_i) \in \mathcal{G}^2$	-	-	_	-	_	2N
	1b	$pk \in \mathcal{G}$	-	-	_	-	_	1
	5	$\tilde{a}_i \leftarrow a_i \cdot pk^{\tilde{r}_i}$	-	-	_	N	pk	_
	6	$\tilde{b}_i \leftarrow b_i \cdot g^{\tilde{r}_i}$	-	-	_	N	g	-
GenProof	4	$c_{j_i} \leftarrow h_i \cdot g^{r_{j_i}}$	-	_	—	N	g	_
	11	$\hat{c}_i \leftarrow g^{\hat{r}_i} \cdot \hat{c}_{i-1}^{\tilde{u}_i}$	_ (N	-	2N	g,h	—
	15	$\hat{t}_i \leftarrow g^{\hat{\omega}_i} \cdot \hat{c}_{i-1}^{\tilde{\omega}_i} \tag{6}$	N	2 -	-	2N	g,h	-
	17	$t_1 \leftarrow g^{\omega_1}$	-	-	-	1	g	-
	18	$t_2 \leftarrow g^{\omega_2}$	-	-	_	1	g	-
	19	$t_3 \leftarrow g^{\omega_3} \cdot \prod_{i=1}^N h_i^{\tilde{\omega}_i}$	-	-	N	1	g	-
	20	$t_{4,1} \leftarrow pk^{-\omega_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{\omega}_i}$	-	-	N	1	pk	-
	21	$t_{4,2} \leftarrow g^{-\omega_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{\omega}_i}$	-	-	N	1	g	-
Total					10N + 3	5		2N + 1

Improving GenProof

Line 11 of GenProof:

▶ Raising the recursion to the exponent by R_i = r̂_i + ũ_iR_{i-1} and U_i = ũ_iU_{i-1} implies

$$\hat{c}_{i} = g^{\hat{r}_{i}} \cdot \hat{c}_{i-1}^{\tilde{u}_{i}} = g^{\hat{r}_{i}} \cdot (g^{R_{i-1}} \cdot h^{U_{i-1}})^{\tilde{u}_{i}} = g^{\hat{r}_{i}+\tilde{u}_{i}R_{i-1}} \cdot h^{\tilde{u}_{i}U_{i-1}} = g^{R_{i}} \cdot h^{U_{i}}$$

For $R_0 = 0$ and $U_0 = 1$, we get $\hat{c}_0 = h$ (see Line 8)

► Line 15 of GenProof: $\hat{t}_i = g^{\hat{\omega}_i} \cdot \hat{c}_{i-1}^{\tilde{\omega}_i} = g^{\hat{\omega}_i} \cdot (g^{R_{i-1}} \cdot h^{U_{i-1}})^{\tilde{\omega}_i} = g^{\hat{\omega}_i + \tilde{\omega}_i R_{i-1}} \cdot h^{\tilde{\omega}_i U_{i-1}}$

Algorithm	Lino	Computation	PI	ĿΕ	PI	RE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	λ	l	b	GMT
CheckProof	1a	$t\in \mathcal{G}\times \mathcal{G}\times \mathcal{G}\times \mathcal{G}^2\times \mathcal{G}^N$	_	_	_	_	-	_	N+5
	1b	$oldsymbol{c}\in\mathcal{G}^{N}, \hat{oldsymbol{c}}\in\mathcal{G}^{N}$	-	_	_	_	-	_	2N
	1c	$(a_i, b_i) \in \mathcal{G}^2, (\tilde{a}_i, \tilde{b}_i) \in \mathcal{G}^2$	-	_	_	-	-	-	4N
	1d	$pk \in \mathcal{G}$	-	—	-	-	-	-	1
	7	$\hat{c} \leftarrow \hat{c}_N \cdot h^{-u}$	-	-	-	-	1	h	-
	8	$\tilde{c} \leftarrow \prod_{i=1}^{N} c_i^{u_i}$	-	_	_	N	-	-	-
	9	$\tilde{a} \leftarrow \prod_{i=1}^{N} a_i^{u_i}$	-	_	_	N	-	-	-
	10	$\tilde{b} \leftarrow \prod_{i=1}^{N} b_i^{u_i}$	-	_	_	N	-	-	-
	13	$\hat{t}'_i \leftarrow \hat{c}^c_i \cdot g^{\hat{s}_i} \cdot \hat{c}^{\tilde{s}_i}_{i-1}$	N	N	-	-	N	g	-
	14	$t_1' \leftarrow \bar{c}^{c} \cdot g^{s_1}$	-	1	-	-	1	g	-
	15	$t_2' \leftarrow \hat{c}^c \cdot g^{s_2}$	-	1	-	-	1	g	-
	16	$t'_3 \leftarrow \tilde{c}^c \cdot g^{s_3} \cdot \prod_{i=1}^N h_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
	17	$t'_{4,1} \leftarrow \tilde{a}^c \cdot pk^{-s_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{s}_i}$	-	1	N	-	1	pk	-
	18	$t'_{4,2} \leftarrow \tilde{b}^c \cdot g^{-s_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
Total					9N	+ 11			7N + 6

Algorithm	Lino	Computation	PI	ĹΕ	PI	RE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	λ	l	b	GMII
CheckProof	1a	$t\in \mathcal{G}\times \mathcal{G}\times \mathcal{G}\times \mathcal{G}^2\times \mathcal{G}^N$	-	_	—	_	-	-	N+5
	1b	$oldsymbol{c}\in\mathcal{G}^{N}, \hat{oldsymbol{c}}\in\mathcal{G}^{N}$	-	_	_	-	-	-	2N
	1c	$(a_i, b_i) \in \mathcal{G}^2, (\tilde{a}_i, \tilde{b}_i) \in \mathcal{G}^2$	-	_	_	-	-	-	4N
	1d	$pk \in \mathcal{G}$	-	_	-	-	-	-	1
	7	$\hat{c} \leftarrow \hat{c}_N \cdot h^{-u}$	-	-	-	-	1	h	-
	8	$\tilde{c} \leftarrow \prod_{i=1}^{N} c_i^{u_i}$	-	-	_	N	-	-	_
	9	$\tilde{a} \leftarrow \prod_{i=1}^{N} a_i^{u_i}$	-	_	_	N	-	-	_
	10	$\tilde{b} \leftarrow \prod_{i=1}^{N} b_i^{u_i}$	-	-	_	N	-	-	_
	13	$\hat{t}'_i \leftarrow \hat{c}^{c}_i \cdot g^{\hat{s}_i} \cdot \hat{c}^{\tilde{s}_i}_{i-1}$	N	N	-	-	N	g	-
	14	$t_1' \leftarrow \bar{c}^{c} \cdot g^{s_1}$	-	1	-	-	1	g	-
	15	$t_2' \leftarrow \hat{c}^c \cdot g^{s_2}$	-	1	-	-	1	g	-
	16	$t'_3 \leftarrow \tilde{c}^c \cdot g^{s_3} \cdot \prod_{i=1}^N h_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
	17	$t'_{4,1} \leftarrow \tilde{a}^c \cdot pk^{-s_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{s}_i}$	-	1	N	-	1	pk	_
	18	$t'_{4,2} \leftarrow \tilde{b}^c \cdot g^{-s_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{s}_i}$	-	1	N	_	1	g	_
Total					9N	+ 11			7N + 6

Algorithm	Lino	Computation	PI	ĽΕ	PI	RE	FI	ЗE	CMT
Algorithm	Line	Computation	l	λ	l	λ	l	b	GMT
CheckProof	1a	$t\in \mathcal{G}\times \mathcal{G}\times \mathcal{G}\times \mathcal{G}^2\times \mathcal{G}^N$	-	_	—	_	-	_	N+5
	1b	$oldsymbol{c} \in \mathcal{G}^N, \hat{oldsymbol{c}} \in \mathcal{G}^N$	-	-	_	-	-	-	2N
	1c	$(a_i, b_i) \in \mathcal{G}^2, (\tilde{a}_i, \tilde{b}_i) \in \mathcal{G}^2$	-	-	_	-	-	-	4N
	1d	$pk \in \mathcal{G}$	-	-	_	-	-	-	1
	7	$\hat{c} \leftarrow \hat{c}_N \cdot h^{-u}$	-	-	-	-	1	h	-
	8	$\tilde{c} \leftarrow \prod_{i=1}^{N} c_i^{u_i}$	-	-	_	N	-	-	-
	9	$\tilde{a} \leftarrow \prod_{i=1}^{N} a_i^{u_i}$	-	-	-	N	-	-	-
	10	$\tilde{b} \leftarrow \prod_{i=1}^{N} b_i^{u_i}$	-	1	À	N	-	-	-
	13	$\hat{t}'_i \leftarrow \hat{c}^c_i \cdot g^{\hat{s}_i} \cdot \hat{c}^{\tilde{s}_i}_{i-1}$	N	N	N	2N	N	-	-
	14	$t_1' \leftarrow \bar{c}^{c} \cdot g^{s_1}$	-	1	-		Jī	g	-
	15	$t_2' \leftarrow \hat{c}^{c} \cdot g^{s_2}$	-	1	-	-	1	g	-
	16	$t'_3 \leftarrow \tilde{c}^c \cdot g^{s_3} \cdot \prod_{i=1}^N h_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
	17	$t'_{4,1} \leftarrow \tilde{a}^c \cdot pk^{-s_4} \cdot \prod_{i=1}^N \tilde{a}_i^{\tilde{s}_i}$	-	1	N	-	1	pk	-
	18	$t'_{4,2} \leftarrow \tilde{b}^c \cdot g^{-s_4} \cdot \prod_{i=1}^N \tilde{b}_i^{\tilde{s}_i}$	-	1	N	-	1	g	-
Total					9N	+ 11			7N + 6

Improving CheckProof

- The only purpose of the values t̂'_i in Line 13 of CheckProof is to compare them with the given values t̂_i in Line 19
- These tests can be conducted using a mix of batch verification techniques

Pa	rtly og	ptimiz	ed	F	ully o	ed		
Gene	Generate Verify		ify	Generate		Verify $s = \lambda$		N
6742	0.21	5406	0.30	3908	0.12	1861	0.10	100
6264	0.20	5233	0.29	3230	0.10	1740	0.10	1 000
5971	0.19	5162	0.29	2817	0.09	1730	0.10	10 000
5782	0.18	5117	0.28	2546	0.08	1729	0.10	100 000
5640	0.18	5083	0.28	2346	0.07	1729	0.10	1000000

$$\lambda=12$$
8, $\ell=$ 3072 bits

Pa	rtly o	ptimiz	ed	F	`ully o	ed		
Gene	erate	Verify		Generate		Verify	$s=\lambda$	N
6742	0.21	5406	0.30	3908	0.12	1861	0.10	100
6264	0.20	5233	0.29	3230	0.10	1740	0.10	1 000
5971	0.19	5162	0.29	2817	0.09	1730	0.10	10 000
5782	0.18	5117	0.28	2546	0.08	1729	0.10	100 000
5640	0.18	5083	0.28	2346	0.07	1729	0.10	1000000

 $\lambda=$ 128, $\ell=$ 3072 bits

Pa	rtly og	ptimiz	ed	F	ully o	ed		
Gene	Generate		e Verify Generate Verify $s = \lambda$		Generate		$s=\lambda$	N
6742	0.21	5406	0.30	3908	0.12	1861	0.10	100
6264	0.20	5233	0.29	3230	0.10	1740	0.10	1000
5971	0.19	5162	0.29	2817	0.09	1730	0.10	10000
5782	0.18	5117	0.28	2546	0.08	1729	0.10	100 000
5640	0.18	5083	0.28	2346	0.07	1729	0.10	1000000

 $\lambda=$ 128, $\ell=$ 3072 bits

Pε	rtly o	ptimiz	zed		Fully o			
Gen	Generate		rify	Generate		Verify $s = \lambda$		N
822	0.28	768	0.35	445	0.15	374	0.17	100
763	0.26	742	0.34	362	0.12	356	0.16	1 000
725	0.25	731	0.34	308	0.11	354	0.16	10000
699	0.24	725	0.33	270	0.09	354	0.16	100000
683	0.23	721	0.33	248	0.09	354	0.16	1000000

 $\lambda=128$, $\ell=256$ bits

Partly optimized					Fully o			
Gen	erate	Ve	rify	Generate		Verify $s = \lambda$		N
822	0.28	768	0.35	445	0.15	374	0.17	100
763	0.26	742	0.34	362	0.12	356	0.16	1 000
725	0.25	731	0.34	308	0.11	354	0.16	10 000
699	0.24	725	0.33	270	0.09	354	0.16	100000
683	0.23	721	0.33	248	0.09	354	0.16	1000000

 $\lambda=128$, $\ell=256$ bits

Partly optimized				Fully o				
Gen	erate	Ve	Verify		Generate		$s = \lambda$	N
822	0.28	768	0.35	445	0.15	374	0.17	100
763	0.26	742	0.34	362	0.12	356	0.16	1000
725	0.25	731	0.34	308	0.11	354	0.16	10000
699	0.24	725	0.33	270	0.09	354	0.16	100000
683	0.23	721	0.33	248	0.09	354	0.16	1000000

 $\lambda=128$, $\ell=256$ bits

- Optimization Techniques
- Application to Wikström's Shuffle Proof

Conclusion

Conclusion

- Product and fixed-base exponentiation algorithms improve the performance by approx. one order of magnitude
- Batch verification algorithms improve the performance by one (general case) respectively two (fixed base/exponent) orders of magnitude
- ▶ Using square root witnesses, group membership in G_q ⊂ Z^{*}_p can be tested at almost no cost
- Applying these techniques to Wikström's shuffle proof improves the overall performance by approx. one order of magnitude