
Outsourcing Modular Exponentiation in
Cryptographic Web Applications

Pascal Mainini and Rolf Haenni
Bern University of Applied Sciences (BFH)

FC18, VOTING’18 Workshop, 2018-03-02

1 / 21



Agenda

I Introduction
I Our protocols
I Evaluation
I Q&A

2 / 21



Introduction

3 / 21



Motivation

I Cryptographic voting protocols1 requiring thousands of
modular exponentiations (modexps)

I Limited performance for modexp calculation in mobile devices
and web browsers

I Possible applications in the IoT domain
I Outsourcing calculation as-is not feasible due to secrecy

requirements

1E.g. Haenni/Koenig/Dubuis: Cast-as-intended in electronic elections based
on oblivious transfer.

4 / 21



Group Aspects

We restrict ourselves to the multiplicative group
Z∗p = {1, . . . , p − 1} of integers modulo p, or corresponding
subgroups 〈x〉 ⊆ Z∗p of known order generated by x , denoted as
Gq.

Operations in the exponent are computed in the additive group
Zq = {0, . . . , q − 1} of integers modulo q.

Our algorithms generalize naturally to arbitrary groups, however we
do not treat other groups such as elliptic curves explicitly as they
are not applicable to the targeted electronic voting protocols.

5 / 21



Basic Principles

We want to perform modular exponentiation:

exp(x , y) = xy mod p

Depending on the application, base and/or exponent must be kept
secret. We assume the result to be secret in general.

6 / 21



Basic Principles

Most protocols in literature perform blinding based on the
homomorphic property of the exponentiation function.

Secret base:

exp(x1x2, y) = (x1x2)y = xy
1 xy

2 = exp(x1, y) exp(x2, y)

Secret exponent:

exp(x , y1 + y2) = xy1+y2 = xy1xy2 = exp(x , y1) exp(x , y2)

Calculation of the respective, blinded modexps is performed on
different servers.

7 / 21



Server Assumptions

All outsourcing protocols involving more than one server require
the servers to be non-colluding. Trivially, colluding servers can
uncover the blinded parameters.

We further distinguish:

I Semi-honest servers: execute the protocol faithfully and always
return correct results

I Malicious servers: may return correct or arbitrary results at
any time

8 / 21



Related Work

Large amount of literature is available and can be classified along
two lines: Number of required servers (1 or 2) and adversary model
(mainly semi-honest and malicious).

Comprehensive analysis and a compilation of protocols for 1 server
is given in Chevalier et al., alternative approaches are presented by
Cavallo et al. and Kiraz et. al.

The main reference for 2-server protocols is the paper by
Hohenberger and Lysyanskaya. Chen et al. and Ye et al. proposed
similar protocols with improved efficiency. We found an alternative
approach based on the subset-sum-problem in a paper proposed by
Ma et al.

9 / 21



Our Protocols

10 / 21



Our Protocols (Semi-Honest Servers)

Secret Base: Outsourced calculation is performed by two servers
with blinded base:

xy ≡ (x1x2)y ≡ xy
1 xy

2 (mod p)

Decomposition of x is achieved by randomly choosing x1 and
letting x2 = x x−11 mod p. This approach has the disadvantage that
the client must calculate the multiplicative inverse x−11 mod p.

A better solution, which we have not seen so far, is to have
x2 = x x1 mod p, from which follows x = x−11 x2 mod p. We obtain:

xy ≡ (x−11 x2)y ≡ (x−11 )y xy
2 ≡ x−y

1 xy
2 (mod p)

11 / 21



Our Protocols (Semi-Honest Servers)

Secret Exponent: Outsourced calculation is performed by two
servers with blinded exponent:

xy ≡ xy1+y2 ≡ xy1xy2 (mod p)

Decomposition of y is achieved by randomly choosing y1 and
letting y2 = y − y1 mod q, which is already very efficient and only
requires a single addition.

12 / 21



Our Protocols (Semi-Honest Servers)

Two-server outsourcing protocol for secret base and public
exponent.

x1 ∈R Gq, x2 ← x x1 mod p;
z1 ← S1.ModExp(x1,−y mod q, p);
z2 ← S2.ModExp(x2, y , p);
return z1z2 mod p

13 / 21



Our Protocols (Malicious Servers)

To detect malicious servers, the general approach in literature is to
challenge each server with additional modexps. Checking is
performed differently depending on the case:

For secret base, exponents must be the same. We check with
identical bases for each server, product of results must be 1.

For secret exponent, base must be the same. We check with
identical modexps for both servers, results must be the same.

With one challenge modexp, we obtain so-called β-checkability of
1/2. This may be arbitrarily increased by sending more challenges,
leading to a general β-checkability of β = c

c+1 for c ≥ 0 challenges.

14 / 21



Our Protocols (Semi-Honest Servers)
Two-server outsourcing protocol for secret base and public
exponent with β = 1/2.

x1 ∈R Gq , x2 ← x x1 mod p, x ′ ∈R Gq ;
r ∈R {0, 1};
if r = 0 then

z1 ← S1.ModExp(x1,−y mod q, p);
z ′
1 ← S1.ModExp(x ′,−y mod q, p);

z2 ← S2.ModExp(x2, y , p);
z ′
2 ← S2.ModExp(x ′, y , p);

end
else

z ′
1 ← S1.ModExp(x ′,−y mod q, p);

z1 ← S1.ModExp(x1,−y mod q, p);
z ′
2 ← S2.ModExp(x ′, y , p);

z2 ← S2.ModExp(x2, y , p);
end
if z ′

1z ′
2 mod p = 1 then

return z1z2 mod p
end
else

return ⊥
end

15 / 21



Comparison of Protocols

Comparison of our algorithms for secret base / public exponent
(1), public base / secret exponent (2) and the respective checke
versions for malicious servers (C):

Paper Protocol Secret Number of
βName Base Exp. Servers ModExps Mult. Inv. Rand.

Protocol 7 yes no 1 2 3 1 3 0
1 Protocol 5 no yes 1 s ≥ 1 log p

s+1 – – 0
Protocol 6 yes yes 1 s ≥ 2 log p

s – 2 0

this

Alg. 1 yes no 2 1 2 – – 0
Alg. 2 no yes 2 1 1 – – 0
Alg. 1 (C) yes no 2 2 2 – – 1/2

Alg. 2 (C) no yes 2 2 1 – – 1/2

2 Exp yes yes 2 4 9 5 6 1/2

3 Exp yes yes 2 3 7 3 5 2/3

Papers: 1) Chevalier et al., 2) Hohenberger and Lysyanskaya, 3) Chen et al.

16 / 21



Evaluation

17 / 21



Implementation

In order to support research in mentioned use cases, we provide
famodulus, a PoC implementation:2

I Exponentiation client in JavaScript
I Exponentiation server in Java, using GMPLib
I A demonstrator application enabling measurements

2https://github.com/mainini/famodulus
18 / 21

https://github.com/mainini/famodulus


Performance Analysis

Time for calculating modexps with different sizes (base / exponent
/ modulus) with GMPLib in our server implementation compared
to browser-only calculation (identical hardware):

Server-Only Browser-Only Server Adv.
ModExps 1024 2048 3072 1024 2048 3072 1024 2048 3072

50 0.09s 0.73s 2.26s 1.63s 11.02s 31.38s 18.45 15.19 13.87
100 0.18s 1.47s 4.48s 3.32s 22.14s 62.69s 18.89 15.02 13.98
500 0.88s 7.09s 22.57s 16.48s 103.19s 310.78s 18.71 14.55 13.77

1000 1.77s 14.26s 44.90s 33.04s 205.38s 626.62s 18.65 14.40 13.96

Last column shows the advantage (factor) of the server compared to the browser.

19 / 21



Performance Analysis

Measurements for Algorithm 2 for different bitsizes. The last
column shows the relative advantage over browser-only calculations
for the same parameters.

Algorithm 2 Adv.
ModExps 1024 2048 3072 3072

50 0.16s 0.88s 2.49s 12.58
100 0.29s 2.01s 4.86s 12.89
500 1.36s 8.11s 24.30s 12.79

1000 2.70s 16.21s 48.21s 13.00

Algorithm 2 (Checked) Adv.
ModExps 1024 2048 3072 3072

50 0.23s 1.40s 4.09s 7.68
100 0.46s 2.78s 8.11s 7.73
500 2.17s 13.32s 40.70s 7.64

1000 4.27s 26.59s 80.54s 7.78

20 / 21



Thanks! Questions?

21 / 21


