

Modeling a Bulletin Board Service based on Broadcast Channels with Memory

Severin Hauser and Rolf Haenni Voting'18 @ FC'18, Curaçao, March 2, 2018

- Introduction
- Broadcast Channel With Memory
- Bulletin Board Service

- Introduction
- Broadcast Channel With Memory
- Bulletin Board Service

The Secure MPC Perspective

- ➤ The "voting problem" can be formulated as a secure multiparty computation (MPC) problem
 - ▶ Parties (voters) P_1, \ldots, P_n with private inputs $x_i \in \{0, 1\}$
 - ▶ Common output $f(x_1,...,x_n) = \sum_i x_i$
- Properties of secure MPC protocols
 - Privacy
 - Correctness
 - Independent inputs
 - Output delivery
 - Fairness
- Formal security definition based on ideal/real-model paradigm

Known Results from MPC Research

- ▶ Let $t \le n$ be the number of corrupted parties
- ▶ For $t < \frac{n}{2}$
 - Secure MPC protocols exist for any function f
 - ▶ Even for computationally unbounded adversaries
 - Precondition: broadcast channel
- $\blacktriangleright \text{ For } t \geq \frac{n}{2}$
 - Secure MPC protocols (without output delivery and fairness) exist for any function f
 - Only for polynomially bounded adversaries
 - Precondition: broadcast channel

Cryptographic Voting Protocols

- General MPC protocols are not applicable to real-world elections
 - ▶ Inefficient for large electorate
 - Limited connectivity of voters (vote-and-go)
 - No broadcast channel among voters
- ► Therefore, e-voting research focuses on designing specialized cryptographic voting protocols with additional parties such as
 - ▶ Election administration
 - Voting server
 - Independent authorities (of which at least some are honest) for tasks such as mixing or threshold decryption
 - Verifiers

which communicate over point-to-point channels

Verifying an Election

- ▶ A precondition for verifying an election is a consistent view of the "election data"
- ➤ This is a Byzantine agreement problem, which can be solved using reliable broadcast protocols
- Same problems as general MPC approach
 - ▶ Inefficient for large number of parties
 - ▶ Limited connectivity of parties during protocol execution
- ➤ Therefore, several voting protocols in the literature refer to a broadcast channel with memory (BCM)
 - Memorization of all submitted messages
 - Delayed delivery
- Problem: no formal definition in literature

- Introduction
- Broadcast Channel With Memory
- Bulletin Board Service

Ideal Channel

- ▶ A distributed system $\mathcal{D} = (Ω, Γ)$ consist of:
 - ▶ Set of parties $\Omega = \{p_1, \dots, p_n\}$
 - Set of ideal channels $\Gamma = \{c_1, \ldots, c_m\}$
- Ideal means:
 - ▶ instantaneous transmission
 - unlimited capacity
 - noiseless
 - total message ordering
- ► Every channel c ∈ Γ defines:
 - ightharpoonup Sender domain $S_c \subseteq \Omega$
 - ▶ Receiver domain $R_c \subseteq \Omega$
 - Message domain \mathcal{M}_c

Message Transmission

- ▶ If $s \in S_c$ transmits $m \in \mathcal{M}_c$ over c to R_c by calling $s : Send_c(m)$
 - then every $r_i \in R_c$ receives m instantaneously
- Parties $p \in \Omega \setminus R_c$ can observe the transmission of m over c, but do not learn anything about m (except possibly its length)
- ▶ Parties $p' \notin \Omega$ can not even observe the transmission of m

Special Cases

	Ω	S_c	R_c
Broadcast channel	_	_	Ω
Public channel	_	Ω	_
Public broadcast channel	_	Ω	Ω
Authentic channel	_	{ <i>s</i> }	_
Authentic broadcast channel	_	{ <i>s</i> }	Ω
Confidential channel	_	_	{ <i>r</i> }
Secure channel	_	{ <i>s</i> }	{ <i>r</i> }
Untappable channel	$\{s,r\}$	{ <i>s</i> }	{ <i>r</i> }

Channel with Memory

- ▶ A channel with memory $c \in \Gamma$ keeps track of all messages
- ▶ $\mathbf{M}_c = \langle m_1, \dots, m_t \rangle$ is called channel history of $c \in \Gamma$, i.e.

$$\mathbf{M}_c \leftarrow \mathbf{M}_c || m$$

is updated each time a message m is transmitted over c

- Sender $s \in S_c$ transmits $m \in \mathcal{M}_c$ over c to R_c by calling $Send_c(m)$
- At any time, receiver $r_i \in R_c$ obtains current \mathbf{M}_c by calling $\mathbf{M}_c \leftarrow Receive_c()$

Broadcast Channel with Memory

- A channel with memory $c \in \Gamma$ is a called broadcast channel with memory (BCM), if $R_c = \Omega$
- In e-voting protocols, voters use public BCM $(S_c = \Omega)$ and authorities use authentic BCM $(S_c = \{s\})$
- ▶ If $C \subseteq \Omega$ denotes a collection of BCMs, then \mathbf{M}_C denotes the joint channel history of all channels
- Verification in an e-voting protocol relies on checking the integrity/consistency/plausibility/validity of the data included in M_C

- Introduction
- Broadcast Channel With Memory
- Bulletin Board Service

Ideal BCMs in the Real World

- Ideal BCMs do not exist in the real world
 - ▶ Transmission is not instantaneous
 - Messages can be lost or altered during transmission
 - Capacity is limited
 - Ambiguous message ordering
 - Stateless (no memory)
- ▶ In the real-world, ideal BCMs can at best be approximated
- ▶ For example by a bulletin board service (BBS), which is responsible for tracking the board history B

Bulletin Board Service

▶ To eliminate a BCM $c \in \Gamma$ from a distributed system (Ω, Γ) , some additional bulletin board parties Φ are added

$$\Omega' = \Omega \cup \Phi$$

- \blacktriangleright Their goal is to offer jointly a bulletin board service to all parties from Ω
- \blacktriangleright Additionally, Ψ contains the channels necessary for connecting the parties from Ω with the bulletin board parties from Φ

$$\Gamma' = (\Gamma \setminus \{c\}) \cup \Psi$$

▶ Actual protocol run on (Ω', Γ') instead of (Ω, Γ)

Functionality

- Instead of broadcasting m over c, pairs $p = (m, \alpha)$ is posted to the BBS
 - p is send to one or multiple bulletin board parties
 - ho α = meta-data (e.g. for authentication)
- ▶ In general, posts are processed in blocks $b = (\{p_1, \dots, p_s\}, \beta)$
 - ▶ Board history update: $\mathbf{B} \leftarrow \mathbf{B}||b|$
 - β = publication evidence (e.g. signed hash chain header)
- ▶ Block size s determines publication mode
 - Buffered publication (s is fixed)
 - ▶ Immediate publication (s = 1)
 - Periodical publication (block added after some time)

Properties

- \triangleright Authentication: only parties from S_c can post messages
- \triangleright Non-Discrimination: all parties from S_c can post messages
- \triangleright Well-Formedness: only messages from \mathcal{M}_c are accepted
- Ordering: correct message order in board history
- Uniqueness: list of recorded messages is unique
- Completeness: all recorded messsges are returned

Basic Roles

- ▶ The bulletin board parties may have different roles:
 - ► Collectors: receive the incoming messages
 - Disseminators: return the board history (upon request)
 - Broadcasters: broadcast information about board history (e.g. a signed hash chain header)
 - ▶ Associates: support the BBS in achieving its properties
- Some of the bulletin parties may act as trustees in the usual sense (a threshold number of honest trustees suffices for maintaining the service)

Special Cases

- Single-party BBS (e.g. Helios, UniVote, ...)
- Multi-party BBS
 - Byzantine agreement protocols
 - Blockchain-based public ledger
- vVote system bulletin board
 - Collectors: peers
 - Disseminator: WBB
 - Broadcaster: publisher

- Introduction
- Broadcast Channel With Memory
- Bulletin Board Service

- Formal definitions of broadcast channels
 - Authentic broadcast channel
 - Public broadcast channel
 - Broadcast channel with memory
- Informal definition of bulletin board service
 - Extension of general channel model
 - Covers several existing bulletin board implementations
 - Proposal of (informal) properties
- Work in progress . . .