
Verifiable Internet Elections with Ever-

lasting Privacy and Minimal Trust

Philipp Locher and Rolf Haenni
VoteID 2015, Bern, September 3, 2015

This work is supported by the Swiss National Science foundation, under the grant 200021L-140650/1

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 1

Vote Privacy Assumptions

“Any adversary is polynomial-time bounded.”

“A threshold number of authorities is trustworthy.”

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 2

Protocol Overview

Goal: Make vote privacy independent of

computational intractability assumptions
trusted authorities

Involved parties

election administration
voters
public bulletin board
verifiers (the public)

Cryptographic ingredients: perfectly hiding commitments,
non-interactive zero-knowledge proofs (NIZKP)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 3

Step 1: Registration

The voter . . .

creates a pair of private and public credentials

sends the public credential to the election administration (over
an authentic channel)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 4

Step 2: Election Preparation

The election administration . . .

publishes the list of public voter credentials on bulletin board

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 5

Step 3: Vote Casting

The voter . . .

creates ballot consisting of

vote
commitment to public credential
election credential
NIZKP

sends ballot to bulletin board (over an anonymous channel)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 6

Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

checks proofs contained in each ballot

computes the election result

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 7

Cryptographic Setup

Let Gp be a cyclic group of prime order p with independent
generators g0, g1

Let Gq ⊂ Z∗p be a sub-group of prime order q | (p − 1) with
independent generators h0, h1, . . . , hN

Assume that DL has no efficient solution in Gp and Gq

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 8

Set Membership Proof
Goal: prove that a committed value belongs to a given set

NIZKP[(u, r) : c = comp(u, r) ∧ u ∈ U]

Secret inputs
u, r ∈ Zp

Public inputs
Commitment c = comp(u, r) ∈ Gp
Set U = {u1, . . . , uM} of values ui ∈ Zp

General Construction
Proposed by Brands et al. (2007)

Let P(X) =
∏M

i=1(X − ui) satisfying P(ui) = 0 for all ui ∈ U

NIZKP[(u, r) : c = comp(u, r) ∧ P(u) = 0]

Polynomial evaluation proof by Bayer and Groth (2013)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 9

Representation Proof

Goal: prove that a commitment contains a DL-representation
of another committed value

NIZKP[(u, r ,v1, . . . , vN , s) : c = comp(u, r)∧
d = comq(v1, . . . , vN , s) ∧ u = hv1

1 · · · hvNN]

Secret inputs

u, r ∈ Zp

v1, . . . , vN , s ∈ Zq

Public inputs

Commitment c = comp(u, r) ∈ Gp
Commitment d = comq(v1, . . . , vN , s) ∈ Gq

Au, Susilo, Mu (2010) proposed an extension of the double
discrete logarithm proof by Camenisch and Stadler (1997)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 10

Step 1: Registration

The voter . . .

creates a pair of private and public credentials

α, β ∈R Zq

u = hα1 h
β
2 ∈ Gq

sends the public credential u to the election administration
(over an authentic channel)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 11

Step 2: Election Preparation

The election administration . . .

defines the list of public voter credentials U = {u1, . . . , uM}
computes coefficients a0, . . . , aM of polynomial

P(X) =
M∏
i=1

(X − ui) =
M∑
i=0

aiX
i

selects independent election generator ĥ ∈ Gq

publishes (U, a0, . . . , aM , ĥ) on bulletin board

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 12

Step 3: Vote Casting
The voter . . .

selects vote e

computes election credential û = ĥβ

computes commitment c = comp(u, r) and d = comq(α, β, s)
to public credential and private credential, respectively

computes the following proofs:

π1 = NIZKP[(u, r) : c = comp(u, r) ∧ P(u) = 0],

π2 = NIZKP[(u, r , α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s)

∧ u = hα1 h
β
2],

π3 = NIZKP[(α, β, s) : d = comq(α, β, s) ∧ û = ĥβ].

sends ballot B = (e, û, c , d , π1, π2, π3) to bulletin board (over
an anonymous channel)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 13

Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

U, a0, . . . , aM , ĥ,B

checks proofs π1, π2, π3 contained in each ballot B ∈ B
detects ballots with identical values û and resolve conflicts

computes the election result from votes v contained in B′ ⊆ B

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 14

Adversary Model

Present adversaries are polynomial-time bounded and thus . . .

unable to solve DL efficiently in Gp and Gq

unable to compute hash−1(h)

Future adversaries will have unrestricted computational
resources and are therefore

able to solve DL efficiently in Gp and Gq

able to compute hash−1(h)

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 15

Correctness

Attack by present adversary (during or shortly after election)

Case 1: Present adversary 6= voter

Find representation (α′, β′) for some u ∈ U
→ equivalent to solving DL
Simulate π1, π2, π3 without valid secret inputs (α′, β′)
→ equivalent to solving DL or inverting hash function

Case 2: Present adversary = voter

Use different β′ 6= β in a second ballot and simulate π3

→ equivalent to solving DL or inverting hash function

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 16

Privacy

Attack by future adversary (possibly in the far future)

For every B = (c , d , e, û, π1, π2, π3) ∈ B
compute β satisfying û = ĥβ

compute (α′, β) satisfying u′ = hα
′

1 hβ2 for every u′ ∈ U

Therefore, uncovering β from every ballot does not reveal
anything about the links between B and U

Note that c , d are perfectly hiding and π1, π2, π3 are perfect
zero-knowledge

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 17

Extensions

To achieve fairness, the vote e must be encrypted

Generate encryption key pair (sk , pk) during election
preparation
Encrypt vote using pk during vote casting
Publish sk to initiate public tallying

Extended credentials are required to vote multiple times

Private credentials (α, β1, . . . , βL)

Public credentials u = hα1 h
β1

2 · · · hβL

L+1

Use different βi for each election

To allow vote updating, some other minor adjustments are
necessary

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 18

Implementaiton and Performance

Performance

Ballot size: logarithmic to the number of registered voters
Ballot generation and verification: logarithmic number of
exponentiations and linearithmic number multiplications

Implementation

Prototype implementation in Java
Crypto library: UniCrypt

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 19

Performance

Ballot Component
Exponentiations

in Gp
Exponentiations

in Gq
Multiplications

in Zp
π1 6blogMc+ 6 – 2M
π2 2K + 1 K(L+ 2) –
π3 – 6 –

Total 6blogMc+ 2K + 7 KL+ 2K + 6 2M

Table 5: Number of exponentiations and multiplications required to verify a single ballot
(without proof of known plaintext of the encrypted vote).

M = |U |
Exponentia-

tions in
Gp

Exponentia-
tions in

Gq

Multiplica-
tions in

Zp

Estimated
Time (Single

Ballot)

Estimated
Time (M
Ballots)

10 185 166 30 0.6 sec. 6.1 sec.
100 203 166 300 0.7 sec. 1.1 min.

1’000 221 166 3’000 0.7 sec. 12.2 min.
10’000 245 166 30’000 0.9 sec. 2.6 hours

100’000 263 166 300’000 2.3 sec. 64.8 hours
1’000’000 287 166 3’000’000 15.9 sec. 4417.5 hours

Table 6: Cost of ballot verification for different numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

From the given results, we conclude again that our protocol works reasonably
well for a medium-sized or even a large electorate. Note that the verification of
the ballots can already start during the vote casting phase, and since it can be
executed in parallel, there is a huge potential for distributing the total amount of
work to arbitrarily many and possibly more powerful machines. While this is in
principle a solution for reducing the 4’400 hours of computation for an election
with one million ballots to a more reasonable value, it restricts somewhat the
idea of a public tallying process.

M = |U | Generation
Verification

Single Ballot M Ballots

10 0.7 sec. 0.6 sec. 6.1 sec.
100 0.7 sec. 0.7 sec. 1.1 min.

1’000 0.9 sec. 0.7 sec. 12.2 min.
10’000 2.2 sec. 0.9 sec. 2.6 hours

100’000 17.0 sec. 2.3 sec. 64.8 hours
1’000’000 3.4 min. 15.9 sec. 4417.5 hours

Table 7: BLA BLA
Table 1: Estimated running times for ballot generation and verification
for different number of voters.

M = |U | Generation
Verification Size

Single Ballot M Ballots Single Ballot M Ballots

10 0.7 sec. 0.6 sec. 6.1 sec. 39.0 KB 0.4 MB
100 0.7 sec. 0.7 sec. 1.1 min. 41.6 KB 4.1 MB

1’000 0.9 sec. 0.7 sec. 12.2 min. 44.3 KB 43.2 MB
10’000 2.2 sec. 0.9 sec. 2.6 hours 47.8 KB 466.5 MB

100’000 17.0 sec. 2.3 sec. 64.8 hours 50.4 KB 4.8 GB
1’000’000 3.4 min. 15.9 sec. 4417.5 hours 53.9 KB 51.4 GB

Table 8: BLA BLA 2

M = |U | Single Ballot M Ballots

10 39.0 KB 0.4 MB
100 41.6 KB 4.1 MB

1’000 44.3 KB 43.2 MB
10’000 47.8 KB 466.5 MB

100’000 50.4 KB 4.8 GB
1’000’000 53.9 KB 51.4 GB

Table 9: BLA BLA 3

4.4 Implementation and Optimizations

In course of developing the protocol presented in this paper, we implemented
both the set membership and the representation proof in UniCrypt [17]. This
is an open-source Java library developed for the purpose of simplifying the
implementation of cryptographic voting protocols.8 The library consist of a
mathematical and a cryptographic layer. The two implemented proofs extend the
proofsystem package, which is a central component of the cryptographic layer. The
same package also contains classes for generating all sorts of preimage or equality
proofs, which we need for computing π3. Other packages in the cryptographic
layer provide implementations of Pedersen commitments and various encryption
schemes. The library provides therefore the full functionality for a straightforward
implementation of our protocol.

In order to check the accuracy of the calculated time estimates of the previ-
ous subsections, we used UniCrypt to generate and verify ballots for different
electorate sizes and measured the times of computation. The results of these
measurements are shown in Table 10. We used the same machine for the tests as
in the previous subsection, a MacBook Pro with a 2.7 GHz Intel Core i7 processor,
and the current UniCrypt version from the project’s development branch on April
1, 2015. In general, the measured running times are quite consistent with the time
estimates from the previous section, for example 18.2 instead of 17.0 seconds for
generating a ballot with 100’000 voters. This difference can be explained by the

8 UniCrypt is publicly available on GitHub under a dual AGPLv3/commercial licence,
see https://github.com/bfh-evg/unicrypt.

Table 2: Ballot size for different numbers of voters.

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 20

Implemetation

proofs, which we need for computing ⇡3. Other packages in the cryptographic
layer provide implementations of Pedersen commitments and various encryption
schemes. The library provides therefore the full functionality for a straightforward
implementation of our protocol.

In order to check the accuracy of the calculated time estimates of the previ-
ous subsections, we used UniCrypt to generate and verify ballots for di↵erent
electorate sizes and measured the times of computation. The results of these
measurements are shown in Table 7. We used the same machine for the tests as in
the previous subsection, a MacBook Pro with a 2.7 GHz Intel Core i7 processor,
and the current UniCrypt version from the project’s development branch on April
1, 2015. In general, the measured running times are quite consistent with the time
estimates from the previous section, for example 18.2 instead of 17.0 seconds for
generating a ballot with 100’000 voters. This di↵erence can be explained by the
overhead for other less expensive operations and for Java’s memory and object
management. Note that for 1’000’000 voters, the actual running times are even
slightly better than the estimates (3.3 instead of 3.4 minutes). An explanation
for this is the fact, that 2Mblog Mc is an upper approximation for the number
of multiplications in Zp.

M = |U | Ballot Generation Ballot Verification

10 1.3 sec. 0.9 sec.
100 1.4 sec. 1.0 sec.

1’000 1.6 sec. 1.1 sec.
10’000 3.0 sec. 1.3 sec.

100’000 18.2 sec. 2.9 sec.
1’000’000 3.3 min. 18.8 sec.

Table 7: Actual running times for generating and verifying a single ballot using the
UniCrypt library.

To conclude the discussion about our implementation and the results of the
performance analysis, we need to stress that the prototype implementation has
not been optimized in any way. To speed up the ballot generation, we may pre-
compute the proofs in a background process of the vote preparation software, and
we may distribute the computations to all available cores of the given machine,
or to the machine’s graphics processing unit. In the final verification of all ballots,
the potential of executing tasks in parallel—possibly on many di↵erent machines—
is even higher. Furthermore, techniques like multi-exponentiation and fixed-base
exponentiation may bring considerable performance improvements, especially for
small elections, where the exponentiations predominate the multiplications. For
very large elections, we should consider replacing the set membership proof as
described in this paper by an approach by Brands et al. [5], which requires 8

p
M

exponentiations but only 2M + 8
p

M multiplications for generating a proof.

Table 3: Actual running times for generating and verifying a single ballot.

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 21

Summary

New approach based on NIZKP

Pros

Everlasting privacy
No trusted authorities (except for fairness)
Simplicity of voting process
Implementation available in UniCrypt

Cons

Anonymous channel required for vote casting
Relatively expensive ballot generation/verification
Restricted scalability

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 22

Outlook

Optimize the implementation

multi-exponentiation
fix-base exponentiation
parallel execution on multiple cores
use polynomial evaluation proof by Brands et al. (2007) when
number of registered voters gets very large

Add receipt-freeness and coercion-resistance

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 23

Questions?

Bern University of Applied Sciences | Berner Fachhochschule | Haute école spécialisée bernoise 24

	Introduction and Protocol Overview
	Cryptographic Preliminaries
	Detailed Protocol Description
	Properties and Extensions
	Performance and Implementation
	Conclusion

