

# Verifiable Internet Elections with Everlasting Privacy and Minimal Trust

Rolf Haenni (co-work with Philipp Locher) Scytl, Barcelona, April 23, 2015

### Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

### Vote Privacy Assumptions

"Any adversary is polynomial-time bounded."

"A threshold number of authorities is trustworthy."

### Protocol Overview

- Goal: Make vote privacy independent of
  - computational intractability assumptions
  - trusted authorities
- Involved parties
  - election administration
  - voters
  - public bulletin board
  - verifiers (the public)
- Cryptographic ingredients: perfectly hiding commitments, non-interactive zero-knowledge proofs (NIZKP)

## Step 1: Registration

#### The voter ...

- creates a pair of private and public credentials
- sends the public credential to the election administration (over an authentic channel)

## Step 2: Election Preparation

The election administration . . .

publishes the list of public voter credentials on bulletin board

### Step 3: Vote Casting

#### The voter . . .

- creates ballot consisting of
  - commitment to public credential
  - ▶ NIZKP that the commitment contains a valid public credential
  - ▶ NIZKP of knowing the corresponding private credential
  - vote
- > sends ballot to bulletin board (over an anonymous channel)

## Step 4: Public Tallying

#### The verifier . . .

- retrieves the election data from bulletin board
- checks proofs contained in each ballot
- computes the election result

### Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

## Cryptographic Setup

- Let  $G_p$  be a cyclic group of prime order p with independent generators  $g_0, g_1$
- Let  $\mathbb{G}_q \subset \mathbb{Z}_p^*$  be a sub-group of prime order  $q \mid (p-1)$  with independent generators  $h_0, h_1, \ldots, h_N$
- $\triangleright$  Assume that DL has no efficient solution in  $\mathcal{G}_p$  and  $\mathbb{G}_q$

### Pedersen Commitments

▶ Pedersen commitment over  $\mathcal{G}_p$ , for  $u, r \in \mathbb{Z}_p$ 

$$com_p(u,r) = g_0^r g_1^u$$

lacksquare Pedersen commitment over  $\mathbb{G}_q$ , for  $v,s\in\mathbb{Z}_q$ 

$$\operatorname{\mathsf{com}}_q(v,s) = h_0^s h_1^v$$

$$\operatorname{\mathsf{com}}_q(v_1,\ldots,v_N,s) = h_0^s h_1^{v_1} \cdots h_N^{v_N}$$

▶ Perfectly hiding, computationally binding, homomorphic

### Non-Interactive Preimage Proofs

Goal: prove knowledge of preimage of a given value

$$NIZKP[(a):b=\phi(a)]$$

- Secret input
  - ▶ a ∈ X
- Public inputs
  - ▶ Homomorphic one-way function  $\phi: X \to Y$
  - $b = \phi(a) \in Y$
- Standard construction
  - Σ-protocol
  - Fiat-Shamir heuristic using hash function
  - ▶ Proof transcript:  $\pi = (t, s) \in Y \times X$

## **Examples of Preimage Proofs**

Knowledge of discrete logarithm (Schnorr)

$$NIZKP[(a):b=g^a]$$

Equality of discrete logarithms (Chaum-Pedersen)

$$NIZKP[(a): b_1 = g_1^a \wedge b_2 = g_2^a]$$

Ability of opening a Pedersen commitment

$$NIZKP[(u,r): c = com_p(u,r)]$$

Knowledge of ElGamal plaintext

$$NIZKP[(m, r) : e = ElGamal_{pk}(m, r)]$$



## Set Membership Proof

## Set Membership Proof

▶ Goal: prove that a committed value belongs to a given set

$$NIZKP[(u, r) : c = com_p(u, r) \land u \in U]$$

- Secret inputs
  - $\triangleright$   $u, r \in \mathbb{Z}_p$
- Public inputs
  - ▶ Commitment  $c = com_p(u, r) \in \mathcal{G}_p$
  - ▶ Set  $U = \{u_1, \dots, u_M\}$  of values  $u_i \in \mathbb{Z}_p$

### General Construction

- ▶ Proposed by Brands et al. (2007)
- ▶ Let  $P(X) = \prod_{i=1}^{M} (X u_i)$  satisfying  $P(u_i) = 0$  for all  $u_i \in U$
- Set membership proof

$$NIZKP[(u, r) : c = com_p(u, r) \land u \in U]$$
 $\iff$ 
 $NIZKP[(u, r) : c = com_p(u, r) \land P(u) = 0]$ 

## Polynomial Evaluation Proof

Polynomial evaluation proof by Bayer and Groth (2013)

$$NIZKP[(u, r, v, s) : c = com_p(u, r) \land d = com_p(v, s) \land P(u) = v]$$

- $\triangleright$  Performance (for v = s = 0)
  - ▶ Transcript:  $4 \log M$  elements of  $\mathcal{G}_p$ ,  $3 \log M$  elements of  $\mathbb{Z}_p$
  - Generation:  $O(M \log M)$ 8 log M exponentiations in  $\mathcal{G}_p$ ,  $2M \log M$  multiplications in  $\mathbb{Z}_p$
  - Verification: O(M) 6 log M exponentiations in  $\mathcal{G}_p$ , 3M multiplications in  $\mathbb{Z}_p$

Public Input:  $c = com_p(u, r) \in \mathcal{G}_p$ ,  $P(X) = \sum_{i=0}^M a_i X^i \in \mathbb{Z}_p[X]$ Secret Input:  $u, r \in \mathbb{Z}_p$ 

#### Generation:

- 1. For j = 1, ..., m, pick  $r_i \in_R \mathbb{Z}_p$  and compute  $c_i = \text{com}_p(u^{2^j}, r_i)$ .
- 2. For  $j=0,\ldots,m$ , pick  $\bar{a}_j,\bar{r}_j\in_R\mathbb{Z}_p$  and compute  $\bar{c}_j=\mathrm{com}_p(\bar{a}_j,\bar{r}_j)$ .
- 3. Compute new polynomial

$$\tilde{P}(X) = \sum_{j=0}^{m} \tilde{a}_{j} X^{j} = \sum_{i=0}^{M} a_{i} \prod_{j=0}^{m} (u^{2^{j}} X + \bar{a}_{j})^{i[j]} X^{1-i[j]} \in \mathbb{Z}_{p}[X]$$

of degree m. For  $j=0,\ldots,m$ , pick  $\tilde{r}_j\in \mathbb{R}$   $\mathbb{Z}_p$  and compute  $\tilde{c}_j=\mathrm{com}_p(\tilde{a}_j,\tilde{r}_j)$ .

- 4. For  $j=0,\ldots,m-1$ , compute  $\hat{a}_j=u^{2^j}\bar{a}_j$ , pick  $\hat{r}_j\in_R\mathbb{Z}_p$ , and compute  $\hat{c}_j=\mathrm{com}_p(\hat{a}_j,\hat{r}_j)$ .
- 5. Compute  $x = h(c, a_0, \dots, a_M, c_1, \dots, c_m, \bar{c}_0, \dots, \bar{c}_m, \tilde{c}_0, \dots, \tilde{c}_m, \hat{c}_0, \dots, \hat{c}_{m-1})$ .
- 6. For j = 0, ..., m, compute  $\bar{a}'_{i} = \bar{a}_{j} + xu^{2^{j}}$ .
- 7. For j = 0, ..., m, compute  $\bar{r}_j^i = \bar{r}_j + xr_j$ .
- 8. For j = 0, ..., m-1, compute  $\hat{r}'_{i} = \hat{r}_{i} + xr_{i+1} b_{i}r_{i}$ .
- 9. Compute  $\tilde{r}' = \sum_{i=0}^{m} \tilde{r}_i x^i$ .

#### Transcript:

 $(c_1,\ldots,c_m,\bar{c}_0,\ldots,\bar{c}_m,\tilde{c}_0,\ldots,\tilde{c}_m,\hat{c}_0,\ldots,\hat{c}_{m-1},\bar{a}'_0,\ldots,\bar{a}'_m,\bar{r}'_0,\ldots,\bar{r}'_m,\hat{r}'_0,\ldots,\hat{r}'_{m-1},\tilde{r}')$  Verification:

- 1. Compute  $x = h(c, a_0, \dots, a_M, c_1, \dots, c_m, \bar{c}_0, \dots, \bar{c}_m, \tilde{c}_0, \dots, \tilde{c}_m, \hat{c}_0, \dots, \hat{c}_{m-1})$ .
- 2. For  $j = 0, \ldots, m$ , check  $c_i^x \bar{c}_j = \text{com}_p(\bar{a}_i', \bar{r}_i')$ .
- 3. For j = 0, ..., m 1, check  $c_{j+1}^x \hat{c}_j = c_j^{\bar{a}_j'} \cdot \text{com}_p(0, \hat{r}_j')$ .
- 4. Check

$$\prod_{i=0}^{m} \tilde{c}_{j}^{x^{j}} = \text{com}_{p} \left( \sum_{i=0}^{M} a_{i} \prod_{j=0}^{m} \bar{a}_{j}^{\prime i[j]} x^{1-i[j]}, \tilde{r}^{\prime} \right).$$



## Representation Proof

### **DL-Representation**

- lacksquare Let  $\mathbb{G}_q\subset\mathbb{Z}_p^*$  be a cyclic group of order q and  $h_1,\ldots,h_{\mathcal{N}}\in\mathbb{G}_q$
- A tuple  $(v_1, \ldots, v_N) \in \mathbb{Z}_q^N$  is a *DL-representation* of  $u \in \mathbb{G}_q$  relative to  $h_1, \ldots, h_N$ , if

$$u=h_1^{\nu_1}\cdots h_N^{\nu_N}$$

▶ Note that  $\mathbb{G}_q \subset \mathbb{Z}_p^* \subset \mathbb{Z}_p$  implies  $u \in \mathbb{Z}_p$ 

### Representation Proof

 Goal: prove that a commitment contains a DL-representation of another committed value

$$NIZKP[(u, r, v_1, \dots, v_N, s) : c = com_p(u, r) \land d = com_q(v_1, \dots, v_N, s) \land u = h_1^{v_1} \cdots h_N^{v_N}]$$

- Secret inputs
  - $\triangleright u, r \in \mathbb{Z}_p$
  - $\triangleright$   $v_1,\ldots,v_N,s\in\mathbb{Z}_q$
- Public inputs
  - ▶ Commitment  $c = \text{com}_p(u, r) \in \mathcal{G}_p$
  - ▶ Commitment  $d = \text{com}_q(v_1, ..., v_N, s) \in \mathbb{G}_q$

### Representation Proof

- ▶ Au, Susilo, Mu (2010) proposed an extension of the double discrete logarithm proof by Camenisch and Stadler (1997)
- Let K be a security parameter (e.g. K = 80)
- Performance
  - ▶ Transcript: K elements of  $\mathcal{G}_p$ ,  $\mathbb{G}_q$ ,  $\mathbb{Z}_p$ , KN elements of  $\mathbb{Z}_q$
  - Generation and verification: O(KN) 2K exponentiations in  $\mathbb{G}_p$ , KN exponentiations in  $\mathbb{G}_q$

Public Input:  $c=\mathrm{com}_p(u,r)\in\mathcal{G}_p,\,d=\mathrm{com}_q(v_1,\ldots,v_N,s)\in\mathbb{G}_q$ Secret Input:  $u,r\in\mathbb{Z}_p,\,v_1,\ldots,v_N,s\in\mathbb{Z}_q$ Generation:

- 1. Pick  $\bar{u}, \bar{r} \in_R \mathbb{Z}_p$  and compute  $\bar{c} = \text{com}_p(\bar{u}, \bar{r})$ .
- 2. For j = 1, ..., K,
  - (a) pick  $\bar{v}_{1,j}, \dots, \bar{v}_{N,j} \in_R \mathbb{Z}_q$  and compute  $\bar{u}_j = h_1^{\bar{v}_{1,j}} \cdots h_N^{\bar{v}_{N,j}}$ ,
  - (b) pick  $\bar{r}_j \in_R \mathbb{Z}_p$  and compute  $\bar{c}_j = \text{com}_p(\bar{u}_j, \bar{r}_j)$ ,
  - (c) pick  $\bar{s}_j \in_R \mathbb{Z}_q$  and compute  $\bar{d}_j = \text{com}_q(\bar{v}_{1,j}, \dots, \bar{v}_{N,j}, \bar{s}_j)$ .
- 3. Compute  $x = h(c, d, \bar{c}, \bar{c}_1, \dots, \bar{c}_k, \bar{d}_1, \dots, \bar{d}_k)$ .
- 4. Compute  $\bar{u}' = \bar{u} xu$  and  $\bar{r}' = \bar{r} xr$ .
- 5. For j = 1, ..., K,
  - (a) for i = 1, ..., N, compute  $\bar{v}'_{i,j} = \bar{v}_{i,j} x[j]v_i$ ,
  - (b) compute  $\bar{r}'_{i} = \bar{r}_{i} x[j] \cdot \text{com}_{q}(\bar{v}'_{1,j}, \dots, \bar{v}'_{N,j}, r),$
  - (c) compute  $\bar{s}'_i = \bar{s}_i x[j]s$ .

### Transcript:

$$(\bar{c}, \bar{c}_1, \dots, \bar{c}_k, \bar{d}_1, \dots, \bar{d}_k, \bar{u}', \bar{r}', \bar{v}'_{1,1}, \dots, \bar{v}'_{N,K}, \bar{r}'_1, \dots, \bar{r}'_k, \bar{s}'_1, \dots, \bar{s}'_k)$$

#### Verification:

- 1. Compute  $x = h(c, d, \bar{c}, \bar{c}_1, \dots, \bar{c}_k, \bar{d}_1, \dots, \bar{d}_k)$ .
- 2. Check  $\bar{c} = c^x \cdot \text{com}_p(\bar{u}', \bar{r}')$ .
- 3. For j = 1, ..., K,
  - (a) check  $\bar{d}_j = d^{x[j]} \cdot \text{com}_q(\bar{v}'_{1,j}, \dots, \bar{v}'_{N,j}, \bar{s}'_j),$
  - (b) compute  $\bar{u}'_i = h_1^{\bar{v}'_{1,j}} \cdots h_N^{\bar{v}'_{N,j}}$ , and check

$$\bar{c}_j = \begin{cases} com_p(\bar{u}'_j, \bar{r}'_j), & \text{if } x[j] = 0, \\ c^{\bar{u}'_j} \cdot com_p(0, \bar{r}'_j), & \text{if } x[j] = 1. \end{cases}$$

### Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

## Step 1: Registration

#### The voter ...

- creates a pair of private and public credentials
- sends the public credential to the election administration (over an authentic channel)

## Step 1: Registration

#### The voter . . .

creates a pair of private and public credentials

$$\alpha, \beta \in_{R} \mathbb{Z}_{q}$$
$$u = h_{1}^{\alpha} h_{2}^{\beta} \in \mathbb{G}_{q}$$

 sends the public credential u to the election administration (over an authentic channel)

### Step 2: Election Preparation

The election administration . . .

publishes the list of public voter credentials on bulletin board

### Step 2: Election Preparation

The election administration . . .

- ightharpoonup defines the list of public voter credentials  $U = \{u_1, \dots, u_M\}$
- $\triangleright$  computes coefficients  $a_0, \ldots, a_M$  of polynomial

$$P(X) = \prod_{i=1}^{M} (X - u_i) = \sum_{i=0}^{M} a_i X^i$$

- lacktriangle selects independent election generator  $\hat{h}\in\mathbb{G}_q$
- ightharpoonup publishes  $(U, a_0, \ldots, a_M, \hat{h})$  on bulletin board

### Step 3: Vote Casting

#### The voter . . .

- creates ballot consisting of
  - commitment the public credential
  - ▶ NIZKP that the commitment contains a valid public credential
  - ▶ NIZKP of knowing the corresponding private credential
  - vote
- sends ballot to bulletin board (over an anonymous channel)

## Step 3: Vote Casting

#### The voter . . .

- $\blacktriangleright$  creates ballot  $B=(c,d,e,\hat{u},\pi_1,\pi_2,\pi_3)$  consisting of
  - ightharpoonup commitment to public credential  $c = \text{com}_p(u, r)$

$$\pi_1 = NIZKP[(u, r) : c = com_p(u, r) \land P(u) = 0]$$

ightharpoonup commitment to private credential  $d = \text{com}_q(\alpha, \beta, s)$ 

$$\pi_2 = \textit{NIZKP}[(\textit{u},\textit{r},\alpha,\beta,\textit{s}):\textit{c} = \mathsf{com}_\textit{p}(\textit{u},\textit{r}) \, \land \textit{d} = \mathsf{com}_\textit{q}(\alpha,\beta,\textit{s}) \, \land \textit{u} = \textit{h}_1^\alpha \, \textit{h}_2^\beta]$$

- vote e
- ightharpoonup election credential  $\hat{u}=\hat{h}^{eta}$

$$\pi_3 = NIZKP[(\alpha, \beta, s) : d = com_q(\alpha, \beta, s) \land \hat{u} = \hat{h}^{\beta}]$$

▶ sends ballot B to bulletin board (over an anonymous channel)

## Step 4: Public Tallying

#### The verifier . . .

- retrieves the election data from bulletin board
- checks proofs contained in each ballot
- computes the election result

## Step 4: Public Tallying

The verifier . . .

retrieves the election data from bulletin board

$$U, a_0, \ldots, a_M, \hat{h}, \mathcal{B}$$

- $\triangleright$  checks proofs  $\pi_1, \pi_2, \pi_3$  contained in each ballot  $B \in \mathcal{B}$
- $\triangleright$  detects ballots with identical values  $\hat{u}$  and resolve conflicts
- lacktriangle computes the election result from votes v contained in  $\mathcal{B}'\subseteq\mathcal{B}$

### Outline

- ► Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

## Adversary Model

- Present adversaries are polynomial-time bounded and thus . . .
  - ightharpoonup unable to solve DL efficiently in  $\mathcal{G}_p$  and  $\mathbb{G}_q$
  - unable to compute hash<sup>-1</sup>(h)
- Future adversaries will have unrestricted computational resources and are therefore
  - $\triangleright$  able to solve DL efficiently in  $\mathcal{G}_p$  and  $\mathbb{G}_q$
  - $\triangleright$  able to compute hash<sup>-1</sup>(h)

### Correctness

### Attack by present adversary (during or shortly after election)

- ► Case 1: Present adversary ≠ voter
  - ► Find representation  $(\alpha', \beta')$  for some  $u \in U$ → equivalent to solving DL
  - Simulate  $\pi_1, \pi_2, \pi_3$  without valid secret inputs  $(\alpha', \beta')$   $\rightarrow$  equivalent to solving DL or inverting hash function
- Case 2: Present adversary = voter
  - ▶ Use different  $\beta' \neq \beta$  in a second ballot and simulate  $\pi_3$  → equivalent to solving DL or inverting hash function

### Privacy

### Attack by future adversary (possibly in the far future)

- ▶ For every  $B = (c, d, e, \hat{u}, \pi_1, \pi_2, \pi_3) \in \mathcal{B}$ 
  - ightharpoonup compute eta satisfying  $\hat{u} = \hat{h}^{eta}$
  - ▶ compute  $(\alpha', \beta)$  satisfying  $u' = h_1^{\alpha'} h_2^{\beta}$  for every  $u' \in U$
- ▶ Therefore, uncovering  $\beta$  from every ballot does not reveal anything about the links between  $\mathcal{B}$  and  $\mathcal{U}$
- Note that c,d are perfectly hiding and  $\pi_1,\pi_2,\pi_3$  are perfect zero-knowledge

#### Extensions

- To achieve fairness, the vote must be encrypted
  - ► Generate encryption key pair (sk, pk) during election preparation
  - Encrypt vote using pk during vote casting
  - Publish sk to initiate public tallying
- Extended credentials are required to vote multiple times
  - $\triangleright$  Private credentials  $(\alpha, \beta_1, \dots, \beta_L)$
  - Public credentials  $u = h_1^{\alpha} h_2^{\beta_1} \cdots h_{l+1}^{\beta_l}$
  - ▶ Use different  $\beta_i$  for each election
- To allow vote updating, some other minor adjustments are necessary

#### Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

## Ballot Size

| Ballot Component | Elements of $G_p$                 | Elements of $\mathbb{Z}_p$ , $\mathbb{G}_q$ | Elements of $\mathbb{Z}_q$ |
|------------------|-----------------------------------|---------------------------------------------|----------------------------|
| $c,d,\hat{u}$    | 1                                 | 2                                           | _                          |
| $\pi_1$          | $4\lfloor \log M \rfloor + 2$     | $3\lfloor \log M \rfloor + 3$               | _                          |
| $\pi_2$          | K+1                               | 2K + 2                                      | K(L+2)                     |
| $\pi_3$          | =                                 | 2                                           | 4                          |
| Entire Ballot    | $4\lfloor \log M \rfloor + K + 4$ | $3\lfloor \log M \rfloor + 2K + 9$          | KL + 2K + 4                |

Table 1: Ballot size as a function of M, K, and L (without encrypted vote and proof of known plaintext of the encrypted vote). Elements of  $\mathbb{Z}_p$  and  $\mathbb{G}_q$  are counted together.

# Ballot Size

| M =  U    | Elements of $\mathcal{G}_p$ | Elements of $\mathbb{Z}_p, \mathbb{G}_q$ | Elements of $\mathbb{Z}_q$ | Single Ballot | M Ballots |
|-----------|-----------------------------|------------------------------------------|----------------------------|---------------|-----------|
| 10        | 96                          | 178                                      | 244                        | 39.0 KB       | 0.4 MB    |
| 100       | 108                         | 187                                      | 244                        | 41.6 KB       | 4.1 MB    |
| 1'000     | 120                         | 196                                      | 244                        | 44.3 KB       | 43.2 MB   |
| 10'000    | 136                         | 208                                      | 244                        | 47.8 KB       | 466.5 MB  |
| 100'000   | 148                         | 217                                      | 244                        | 50.4 KB       | 4.8 GB    |
| 1'000'000 | 164                         | 229                                      | 244                        | 53.9 KB       | 51.4 GB   |

Table 2: Ballot size for different numbers of voters and parameters  $K=80,\ L=1,$  |p|=1024, and |q|=160.

### Cost of Ballot Generation

| D. II. 4 C       | Exponentiations                    | Exponentiations   | Multiplications             |
|------------------|------------------------------------|-------------------|-----------------------------|
| Ballot Component | in $\mathcal{G}_p$                 | in $\mathbb{G}_q$ | in $\mathbb{Z}_p$           |
| $c,d,\hat{u}$    | 2                                  | 4                 | _                           |
| $\pi_1$          | $8\lfloor \log M \rfloor + 4$      | _                 | $2M \lfloor \log M \rfloor$ |
| $\pi_2$          | 2K+2                               | K(L+2)            | _                           |
| $\pi_3$          | _                                  | 4                 | _                           |
| Entire Ballot    | $8\lfloor \log M \rfloor + 2K + 8$ | KL + 2K + 8       | $2M \lfloor \log M \rfloor$ |

Table 3: Number of exponentiations and multiplications required to generate a single ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

### Cost of Ballot Generation

| M   TT    | Exponentiations    | Exponentiations   | Multiplications   | Estimated Time  |
|-----------|--------------------|-------------------|-------------------|-----------------|
| M =  U    | in $\mathcal{G}_p$ | in $\mathbb{G}_q$ | in $\mathbb{Z}_p$ | (Single Ballot) |
| 10        | 192                | 248               | 60                | 0.7 sec.        |
| 100       | 216                | 248               | 1'200             | 0.7 sec.        |
| 1'000     | 240                | 248               | 18'000            | 0.9 sec.        |
| 10'000    | 272                | 248               | 260'000           | 2.2 sec.        |
| 100'000   | 296                | 248               | 3'200'000         | 17.0 sec.       |
| 1'000'000 | 328                | 248               | 40'000'000        | 3.4 min.        |

Table 4: Cost of ballot generation for different numbers of voters and parameters K=80, L=1, |p|=1024, and |q|=160. The time estimates are based on 350 exponentiations per second in  $\mathbb{G}_p$ , 2'000 exponentiations per second in  $\mathbb{G}_q$ , and 200'000 multiplications per second in  $\mathbb{Z}_p$ .

### Cost of Ballot Verification

| D. 11.4 C        | Exponentiations                    | Exponentiations   | Multiplications   |
|------------------|------------------------------------|-------------------|-------------------|
| Ballot Component | in $\mathcal{G}_p$                 | in $\mathbb{G}_q$ | in $\mathbb{Z}_p$ |
| $\pi_1$          | $6\lfloor \log M \rfloor + 6$      | _                 | 2M                |
| $\pi_2$          | 2K + 1                             | K(L+2)            | _                 |
| $\pi_3$          | _                                  | 6                 | _                 |
| Total            | $6\lfloor \log M \rfloor + 2K + 7$ | KL + k + 6        | 2M                |

Table 5: Number of exponentiations and multiplications required to verify a single ballot (without proof of known plaintext of the encrypted vote).

## Cost of Ballot Verification

|           | Exponentia-       | Exponentia-    | Multiplica-    | Estimated    | Estimated    |
|-----------|-------------------|----------------|----------------|--------------|--------------|
| M =  U    | tions in          | tions in       | tions in       | Time (Single | Time $(M$    |
|           | $\mathcal{G}_{p}$ | $\mathbb{G}_q$ | $\mathbb{Z}_p$ | Ballot)      | Ballots)     |
| 10        | 185               | 166            | 30             | 0.6 sec.     | 6.1 sec.     |
| 100       | 203               | 166            | 300            | 0.7 sec.     | 1.1 min.     |
| 1,000     | 221               | 166            | 3'000          | 0.7 sec.     | 12.2 min.    |
| 10'000    | 245               | 166            | 30'000         | 0.9 sec.     | 2.6 hours    |
| 100'000   | 263               | 166            | 300'000        | 2.3 sec.     | 64.8 hours   |
| 1'000'000 | 287               | 166            | 3'000'000      | 15.9 sec.    | 4417.5 hours |

Table 6: Cost of ballot verification for different numbers of voters and parameters K=80, L=1, |p|=1024, and |q|=160. The time estimates are based on 350 exponentiations per second in  $\mathcal{G}_p$ , 2'000 exponentiations per second in  $\mathbb{G}_q$ , and 200'000 multiplications per second in  $\mathbb{Z}_p$ .

# Time Measurements with UniCrypt

| M =  U    | Ballot Generation | Ballot Verification |
|-----------|-------------------|---------------------|
| 10        | 1.3 sec.          | 0.9 sec.            |
| 100       | 1.4 sec.          | 1.0 sec.            |
| 1'000     | 1.6 sec.          | 1.1 sec.            |
| 10'000    | 3.0 sec.          | 1.3 sec.            |
| 100'000   | 18.2 sec.         | 2.9  sec.           |
| 1'000'000 | 3.3 min.          | 18.8 sec.           |

Table 7: Actual running times for generating and verifying a single ballot using the UniCrypt library.

#### Outline

- Introduction and Protocol Overview
- Cryptographic Preliminaries
   Set Membership Proof
   Representation Proof
- Detailed Protocol Description
- Properties and Extensions
- Performance and Implementation
- Conclusion

# Summary

- New approach based on different cryptographic primitives
- Pros
  - Everlasting privacy
  - No trusted authorities (except for fairness)
  - Simplicity of voting process
  - Implementation available in UniCrypt
- Cons
  - Anonymous channel required for vote casting
  - Relatively expensive ballot generation/verification
  - Restricted scalability

### Outlook

- Optimize the implementation
  - multi-exponentiation
  - fix-base exponentiation
  - parallel execution on multiple cores
  - use polynomial evaluation proof by Brands et al. (2007) when M gets very large
- Add receipt-freeness (we have a solution!) or coercionresistance
- Generate return codes?