A Lightweight Implementation of a Shuffle Proof

for Electronic Voting Systems

Philipp Locher and Rolf Haenni

Bern University of Applied Sciences

Informatik 2014, Stuttgart

September 2014

This work is supported by the Swiss National Science foundation, under the grant 200021L-140650/1

UniVote: Verifiable Electronic Voting over the Internet

v

Internet voting system for student board elections at Swiss
universities

Project started in 2012
First elections in spring 2013

v

v

v

6 elections were held successfully

v

https://www.univote.ch

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 2

UniVote is (not yet) end-to-end verifiable and offers anonymized
vote casting [Neff01, HS11].

Mixing of public keys:

pkal pk’aQ pk/“./an
—> > . —
\ e \ ~
N\ \ J/ U/
X) N
\ <
AN >\ L —— SN
N/ N ~ ’
. AN NG
RN ~
k N VRN N FEERN L&
pk — > AT S P
N AN Y,
< SN B
N / Y AN
— N, >/ — .
w Pl ¥
N ~ SN
IR RN N
. \ N .
— > — .. —»" -
Mixer 1 Mixer 2 Mixer m

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

Before the final decryption and tally phase, the ballots are mixed.

> Late registration (students cannot be forced to register before
voting phase)

» Anonymous channel cannot always be expected

» No performance issue (only a few thousand ballots)

ReEnc(u) ReEnc(u’) ReEnc(u’-’
. — .. —> —
N \ , .~ /
Nl \ s N
N N o~
N ~ /
X ANy A
SN ARENY
u 1 Nl > K =/ — ReEnc(u)
2% X
A / \ N
’ N / | ’ N
AN / ... — > N T
Mo S se”
X NS PR
L \\ 7 ~ Pad N
— \ > S N>
Mixer 1 Mixer 2 Mixer n

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 4

UniCrypt is a cryptographic Java library:

» Simplifies the implementation of cryptographic voting
protocols

» Split into two layers: mathematical fundament and
cryptographic primitives

» Type safety on a mathematical level

> https://github.com/bfh-evg/unicrypt

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 5

» Verificatum: An implementation of a full-featured mix-net by
Wikstrom

» A number of prototype implementations of shuffle proofs

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

A new implementation of a shuffle proof

» Based on the findings of Wikstrém and Terelius [Wik09,
TW10]

» Embedded in a cryptographic library with a clean and intuitive
application programming interface

» Full flexibility with respect to the encryption system and the
algebraic groups
» Support for different types of mix-nets

» Portable to any device running a Java Virtual Machine

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 7

_Encryption) Shuffle

Proof that each ciphertext of a list of ciphertexts has been
re-encrypted and permuted

ReEnc(u;,r;)

l
Uy —»t A — uw(2)

Uy —>r —> Ur(p)

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

-rém/TereIius’s Shuffle Proof

[Wik09] A Commitment-Consistent Proof of a Shuffle

» Offline part: Commit to a permutation matrix and proof that
it is indeed a permutation matrix.

» Online part: Shuffle the input batch and give a commitment-
consistent proof of a shuffle.

[TW10] Proofs of Restricted Shuffles
> Restricting the set of permutations.

» A new proof of a shuffle based on a permutation matrix.

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 9

-entation

Shuffling and the shuffle proof are implemented in UniCrypt inside
the following cryptographic components:

Mixer Covers the shuffle functionality without proving its
correctness. Two implementations: re-encryption mixer and
identity mixer

Proof System Holds all types of zero-knowledge proofs, including
the proof of a shuffle

Challenge Generator Creates challenges in an interactive or
non-interactive manner

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

// Select cyclic group for safe prime p=2q+1 (1024 bit)
CyclicGroup group = GStarModSafePrime.getRandomlinstance (1024);

// Create ElGamal encryption scheme and key pair
ElGamalEncryptionScheme elGamal =
ElGamalEncryptionScheme. getlnstance(group);

Pair keys = elGamal.getKeyPairGenerator (). generateKeyPair ();
Element pk = keys.getSecond ();

// Set shuffle size and create random ElGamal ciphertexts
int n = 100;
Tuple ciphertexts = Tuple.getlnstance();
for (int i = 0; i < n; i++) {
Element m = group.getRandomElement ();
Pair ¢ = elGamal.encrypt(pk, m);
ciphertexts = ciphertexts.add(c);

Listing 1: Setup

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

_ Example of Usage

ReEncryptionMixer mixer =
ReEncryptionMixer. getlnstance (elGamal, pk, n);

PermutationElement pi =
mixer.getPermutationGroup (). getRandomElement ();

Tuple r = mixer.generateRandomizations ();

// Shuffle ciphertexts using pi and r
Tuple shuffledCiphertexts = mixer.shuffle(ciphertexts,

pi,

// Create mixer, random permutation pi, and randomizations r

r);

Listing 2: Shuffle

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

// Create permutation commitment c_pi based on pi

// and randomizations s

PermutationCommitmentScheme pcs =
PermutationCommitmentScheme. getlnstance (group, n);

Tuple s = pcs.getRandomizationSpace (). getRandomElement ();

Tuple c¢_pi = pcs.commit(pi, s);

// Create permutation commitment proof system
PermutationCommitmentProofSystem pcps =
PermutationCommitmentProofSystem . getlnstance (group, n);

// Define private and public input
Pair offlinePrivatelnput = Pair.getlnstance(pi, s);
Element offlinePubliclnput = c_pi;

// Generate permutation commitment proof
Pair offlineProof =

pcps.generate(offlinePrivatelnput , offlinePubliclnput);

Listing 3: Online Phase (Proof of Knowledge of Permutation Matrix)

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

// Create shuffle proof system
ReEncryptionShuffleProofSystem rsps =
ReEncryptionShuffleProofSystem
.getlnstance(group, n, elGamal, pk);

// Define private and public input
Triple onlinePrivatelnput = Triple.getlnstance(pi, s, r);
Triple onlinePubliclnput =

Triple.getlnstance(c_pi, ciphertexts, shuffledCiphertexts);

// Generate shuffle proof
Triple onlineProof =

rsps.generate(onlinePrivatelnput, onlinePubliclnput);

Listing 4: Online Phase (Commitment Consistent Proof of a Shuffle)

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

_ Example of Usage

// Verify permutation commitment proof
boolean vl = pcps.verify (offlineProof, offlinePubliclnput);

// Verify shuffle proof
boolean v2 = rsps.verify(onlineProof, onlinePubliclnput);

// Verify equality of permutation commitments
boolean v3 =

offlinePubliclnput.isEquivalent(onlinePubliclnput.getFirst());

if (vl && v2 && v3) success ();

Listing 5: Proof Verification

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

Thank you!

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

-n/TereIius's Shuffle Proof

An N x N - matrix M is a permutation matrix if there is exactly
one non-zero element in each row and column and if this non-zero
element is equal to one.

Example:
0 01 X1 X3
1 00 X2 = X1
010 X3 X2

If M, is a permutation matrix for the permutation 7 then

M7r x=x% = (Xﬂ_(]_)7 . ,Xﬂ-(N))

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 17

-Terelius's Shuffle Proof

Theorem (Permutation Matrix) [TW10]
Let M = (m; ;) be an N x N - matrix over Zq and X = (x1,...,Xxn)
be a list of variables. Then M is a permutation matrix if and only if

N N

H(n_‘l,',)_(> = HX,' and Mi = i

i=1 i=1

m; denotes the i-th row vector of M and (r;, X) = ZJN:1 mjj X;

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

-m/TereIius’s Shuffle Proof

A matrix commitment based on the generalized Pedersen
commitment has the property:

(Com(M,5), &) = Com(Me, (5, €))

It follows that if M is a permutation matrix then

Meé = & = (erq1),- - -, ex(n)) and (Com(M,5), &) is a publicly
computed commitment to the permuted é - vector based on the
commitment to M.

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

-jm/TereIius’s Shuffle Proof

Proof of Knowledge of Permutation Matrix (offline) 1/2

Common Input: Matrix commitment ¢,
Private Input: Permutation matrix M, and 5 such that ¢, = Com(

1. V chooses & € Z) randomly and hands & to P
2. P computes v = (5,1), w = (5,&) and & = M, é&.
3. V outputs the result of

vV, W E Zq

N
ZN Com(1,v) = (cr,1) A Com(&',w) = (c,, & H

3 -proof [

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

M.,).

N
=[]
i=1

-6m/Tere|ius’s Shuffle Proof

Proof of Knowledge of Permutation Matrix (offline) 2/2

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof by the homomorphic one-way

function:

¢0ffline(vy w, E, d, 5/) =

(Com(i, v), Com(&',w), g™ cgi, co g™ c,f,’/v_l, Com(0, d))

With additional private input: Randomness t € ZQ’ and d = dy and
di =ti+e/di_qfori>2,...,Nwithdi =t;. ¢ = gt"c,-‘i1 and ¢g = h.

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

-trém/TereIius's Shuffle Proof

Commitment-Consistent Proof of a Shuffle (online) 1/2

Common Input: Permutation matrix commitment ¢, and ciphertexts
(ElGamal) u1, ..., un, uf, ..., upy € (Gg x Gg).

Private Input: Permutation 7w and randomness 7 € ZQ’ such that

u,f = ReEnc(u,r(,-), I‘ﬂ.(,-)).

1. V chooses & € ZQ’ randomly and hands é to P
2. P computes w = (5, &), r = (F, &) and & = M, é&.
3. V outputs the result of

N

Com(é&',w) = (c,, € H G = ReEnc(H ui)%,r)

i=1 i=1

row € Zg

¥ -proof [e 7 N

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 22

-Terelius's Shuffle Proof

Commitment-Consistent Proof of a Shuffle (online) 2/2

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof by the homomorphic one-way
function:

N

Gonline(r, w, &) = (Com(é’, w), H(u;)e; Enc(1, —r))

i=1

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems

	Wikström/Terelius's Shuffle Proof
	Example of Usage
	Conclusion
	Wikström/Terelius's Shuffle Proof

