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UniVote: Verifiable Electronic Voting over the Internet

v

Internet voting system for student board elections at Swiss
universities

Project started in 2012
First elections in spring 2013

v

v

v

6 elections were held successfully

v

https://www.univote.ch
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UniVote is (not yet) end-to-end verifiable and offers anonymized
vote casting [Neff01, HS11].

Mixing of public keys:
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Before the final decryption and tally phase, the ballots are mixed.

> Late registration (students cannot be forced to register before
voting phase)

» Anonymous channel cannot always be expected

» No performance issue (only a few thousand ballots)
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UniCrypt is a cryptographic Java library:

» Simplifies the implementation of cryptographic voting
protocols

» Split into two layers: mathematical fundament and
cryptographic primitives

» Type safety on a mathematical level

> https://github.com/bfh-evg/unicrypt
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» Verificatum: An implementation of a full-featured mix-net by
Wikstrom

» A number of prototype implementations of shuffle proofs
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A new implementation of a shuffle proof

» Based on the findings of Wikstrém and Terelius [Wik09,
TW10]

» Embedded in a cryptographic library with a clean and intuitive
application programming interface

» Full flexibility with respect to the encryption system and the
algebraic groups
» Support for different types of mix-nets

» Portable to any device running a Java Virtual Machine

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems 7



_Encryption) Shuffle

Proof that each ciphertext of a list of ciphertexts has been
re-encrypted and permuted

ReEnc(u;,r;)

l
Uy —»t A — uw(2)

Uy —>r —> Ur(p)
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-rém/TereIius’s Shuffle Proof

[Wik09] A Commitment-Consistent Proof of a Shuffle

» Offline part: Commit to a permutation matrix and proof that
it is indeed a permutation matrix.

» Online part: Shuffle the input batch and give a commitment-
consistent proof of a shuffle.

[TW10] Proofs of Restricted Shuffles
> Restricting the set of permutations.

» A new proof of a shuffle based on a permutation matrix.
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-entation

Shuffling and the shuffle proof are implemented in UniCrypt inside
the following cryptographic components:

Mixer Covers the shuffle functionality without proving its
correctness. Two implementations: re-encryption mixer and
identity mixer

Proof System Holds all types of zero-knowledge proofs, including
the proof of a shuffle

Challenge Generator Creates challenges in an interactive or
non-interactive manner

A Lightweight Implementation of a Shuffle Proof for Electronic Voting Systems



// Select cyclic group for safe prime p=2q+1 (1024 bit)
CyclicGroup group = GStarModSafePrime.getRandomlinstance (1024);

// Create ElGamal encryption scheme and key pair
ElGamalEncryptionScheme elGamal =
ElGamalEncryptionScheme. getlnstance(group);

Pair keys = elGamal.getKeyPairGenerator (). generateKeyPair ();
Element pk = keys.getSecond ();

// Set shuffle size and create random ElGamal ciphertexts
int n = 100;
Tuple ciphertexts = Tuple.getlnstance();
for (int i = 0; i < n; i++) {
Element m = group.getRandomElement ();
Pair ¢ = elGamal.encrypt(pk, m);
ciphertexts = ciphertexts.add(c);

Listing 1: Setup
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_ Example of Usage

ReEncryptionMixer mixer =
ReEncryptionMixer. getlnstance (elGamal, pk, n);

PermutationElement pi =
mixer.getPermutationGroup (). getRandomElement ();

Tuple r = mixer.generateRandomizations ();

// Shuffle ciphertexts using pi and r
Tuple shuffledCiphertexts = mixer.shuffle(ciphertexts,

pi,

// Create mixer, random permutation pi, and randomizations r

r);

Listing 2: Shuffle
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// Create permutation commitment c_pi based on pi

// and randomizations s

PermutationCommitmentScheme pcs =
PermutationCommitmentScheme. getlnstance (group, n);

Tuple s = pcs.getRandomizationSpace (). getRandomElement ();

Tuple c¢_pi = pcs.commit(pi, s);

// Create permutation commitment proof system
PermutationCommitmentProofSystem pcps =
PermutationCommitmentProofSystem . getlnstance (group, n);

// Define private and public input
Pair offlinePrivatelnput = Pair.getlnstance(pi, s);
Element offlinePubliclnput = c_pi;

// Generate permutation commitment proof
Pair offlineProof =

pcps.generate(offlinePrivatelnput , offlinePubliclnput);

Listing 3: Online Phase (Proof of Knowledge of Permutation Matrix)
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// Create shuffle proof system
ReEncryptionShuffleProofSystem rsps =
ReEncryptionShuffleProofSystem
.getlnstance(group, n, elGamal, pk);

// Define private and public input
Triple onlinePrivatelnput = Triple.getlnstance(pi, s, r);
Triple onlinePubliclnput =

Triple.getlnstance(c_pi, ciphertexts, shuffledCiphertexts);

// Generate shuffle proof
Triple onlineProof =

rsps.generate(onlinePrivatelnput, onlinePubliclnput);

Listing 4: Online Phase (Commitment Consistent Proof of a Shuffle)
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_ Example of Usage

// Verify permutation commitment proof
boolean vl = pcps.verify (offlineProof, offlinePubliclnput);

// Verify shuffle proof
boolean v2 = rsps.verify(onlineProof, onlinePubliclnput);

// Verify equality of permutation commitments
boolean v3 =

offlinePubliclnput.isEquivalent(onlinePubliclnput.getFirst());

if (vl && v2 && v3) success ();

Listing 5: Proof Verification
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Thank you!
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-n/TereIius's Shuffle Proof

An N x N - matrix M is a permutation matrix if there is exactly
one non-zero element in each row and column and if this non-zero
element is equal to one.

Example:
0 01 X1 X3
1 00 X2 = X1
010 X3 X2

If M, is a permutation matrix for the permutation 7 then

M7r x=x% = (Xﬂ_(]_)7 . ,Xﬂ-(N))
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-Terelius's Shuffle Proof

Theorem (Permutation Matrix) [TW10]
Let M = (m; ;) be an N x N - matrix over Zq and X = (x1,...,Xxn)
be a list of variables. Then M is a permutation matrix if and only if

N N

H(n_‘l,',)_(> = HX,' and Mi = i

i=1 i=1

m; denotes the i-th row vector of M and (r;, X) = ZJN:1 mjj X;
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-m/TereIius’s Shuffle Proof

A matrix commitment based on the generalized Pedersen
commitment has the property:

(Com(M,5), &) = Com(Me, (5, €))

It follows that if M is a permutation matrix then

Meé = & = (erq1),- - -, ex(n)) and (Com(M,5), &) is a publicly
computed commitment to the permuted é - vector based on the
commitment to M.
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-jm/TereIius’s Shuffle Proof

Proof of Knowledge of Permutation Matrix (offline) 1/2

Common Input: Matrix commitment ¢,
Private Input: Permutation matrix M, and 5 such that ¢, = Com(

1. V chooses & € Z) randomly and hands & to P
2. P computes v = (5,1), w = (5,&) and & = M, é&.
3. V outputs the result of

vV, W E Zq

N
ZN Com(1,v) = (cr,1) A Com(&',w) = (c,, & H

3 -proof [
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-6m/Tere|ius’s Shuffle Proof

Proof of Knowledge of Permutation Matrix (offline) 2/2

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof by the homomorphic one-way

function:

¢0ffline(vy w, E, d, 5/) =

(Com(i, v), Com(&',w), g™ cgi, co g™ c,f,’/v_l, Com(0, d))

With additional private input: Randomness t € ZQ’ and d = dy and
di =ti+e/di_qfori>2,...,Nwithdi =t;. ¢ = gt"c,-‘i1 and ¢g = h.
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-trém/TereIius's Shuffle Proof

Commitment-Consistent Proof of a Shuffle (online) 1/2

Common Input: Permutation matrix commitment ¢, and ciphertexts
(ElGamal) u1, ..., un, uf, ..., upy € (Gg x Gg).

Private Input: Permutation 7w and randomness 7 € ZQ’ such that

u,f = ReEnc(u,r(,-), I‘ﬂ.(,-)).

1. V chooses & € ZQ’ randomly and hands é to P
2. P computes w = (5, &), r = (F, &) and & = M, é&.
3. V outputs the result of

N

Com(é&',w) = (c,, € H G = ReEnc(H ui)%,r)

i=1 i=1

row € Zg

¥ -proof [ e 7 N
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-Terelius's Shuffle Proof

Commitment-Consistent Proof of a Shuffle (online) 2/2

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof by the homomorphic one-way
function:

N

Gonline(r, w, &) = (Com(é’, w), H(u;)e; Enc(1, —r))

i=1
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