
Bachelor Project

Fall Term 2014

Online Inspector for UniBoard

Author:

Priya Bianchetti

Supervisor:

Rolf Haenni

January 16, 2015

Contents

1 Introduction 5

1.1 Present Situation . 5

1.2 Project Goal . 5

1.3 Contribution . 6

1.4 Report Structure . 6

2 Technical Background 7

2.1 Web Services . 7

2.1.1 JAX-WS . 8

2.2 JavaEE Web Application . 9

2.3 Certi�cates and Signatures . 10

3 UniBoard 12

3.1 Properties of UniBoard . 12

3.2 The Two Basic Operations of UniBoard 13

3.2.1 Post Operation . 13

3.2.2 Get Operation . 14

3.3 UniBoard Inspector . 15

3.3.1 Data Queried by the Application 15

3.3.2 Format of a Post . 17

4 Requirements Analysis and Design 18

4.1 Use Cases . 18

4.1.1 Use Case Diagram . 18

4.1.2 UC 1: View Post . 19

4.1.3 UC 2: Inspect Posts Using Basic Search 19

4.1.4 UC 3: Inspect Posts Using Advanced Search 19

4.1.5 UC 4: Inspect Posts Using Public Key 20

4.2 Mock-ups . 21

4.2.1 UniBoard Inspector Dashboard . 21

4.2.2 Inspection Using Basic Search . 22

4.2.3 Inspection Using Advanced Search 23

4.2.4 Inspection Using Public Key . 24

4.2.5 View Post . 25

2

5 Implementation 26

5.1 UniBoard Inspector Project Components 26

5.2 Constructing a Query . 28

5.3 SSD System Sequence Diagrams . 29

5.3.1 SSD Basic Search . 29

5.3.2 SSD Advanced Search . 29

5.3.3 SSD Search by Public Key . 29

5.4 Page Flow Diagram . 33

5.5 Exception Handling and Testing . 34

5.6 Tools Used . 36

6 Work Methods and Project Organization 37

6.1 Project Plan . 38

6.2 Weekly Goals Achieved . 39

7 Conclusion 40

8 Annexes 41

8.1 UniBoard Inspector User Interfaces . 41

8.1.1 View Post Dialog . 41

8.1.2 Advanced Search Dialog . 42

8.1.3 Search by Public Key Dialog . 43

8.1.4 Basic Search Results Page . 44

8.2 JSON Messages . 45

8.2.1 JSON Message for the Post Candidate 45

8.2.2 JSON Message for the Post ElectionData 46

8.2.3 JSON Message for the Post Ballot 47

8.2.4 JSON Message for the Post DecryptedVote 48

8.2.5 JSON Message for the Post ElectionResult 49

3

Online Inspector for UniBoard

Abstract. UniBoard is a system that deals with the implementation of a public bulletin

board where data can be stored. Currently, UniBoard o�ers a web service interface to

post messages to the board and read previously posted messages. Data stored to the

board are called posts. The nature of the posted messages may vary from being a clear

text message to something much more complicated like a Base64 encoded message.

The goal of this project is to develop an independent web application that allows to

inspect the content of the board. In order to do so the application communicates with

UniBoard over the existing web service interface. A query is sent to the board and the

corresponding results are obtained. The application allows a user to view the content

of the board without any technical knowledge of the existing web service. It acts as a

black box between the user and UniBoard. The technical complexity of building a query,

communicating with UniBoard over a web service interface and displaying the results in

a clear and convenient way is handled by the application. The application is a view-only

application and does not allow modi�cations to be made to the content displayed.

4

1 Introduction

In this section, information concerning the actual situation of the UniBoard system, the

goal of the project and its contribution to the existing system is provided.

1.1 Present Situation

UniBoard is implemented by the current e-voting projects, UniVote and UniCert. For

example UniVote uses a public bulletin board to register information about an election,

the ballots, the voters etc. Information posted to the board is not always in a readable

format as it contains data that is encoded.

An author is a user who posts a message to the board and a reader is a user read-

ing from the board. The existing web service interface called UniBoardService exposes

two principle operations, the Post and the Get operations that allow to post messages

to the board and read previously posted messages respectively. All communication with

UniBoard is done over the existing web service interface.

1.2 Project Goal

The work of this project includes the implementation of an application to inspect the

content of the board. The application ful�lls the following properties:

• It is a web service client application that consumes the services of the existing web

service interface. More speci�cally, it invokes the GET operation of the web service

in order to read from the board.

• It provides a web user interface for users to enter the search criteria.

• It provides di�erent search methods in order to �lter out the posts from less re-

strictive to more restrictive levels.

• It queries the board for content matching the search criteria and displays the results

of the search in a viewer.

5

1.3 Contribution

The development of the web application possessing the above mentioned properties will

allow users to monitor what is happening on the board. Imagine that you posted a mes-

sage to the board and now you would like to see if the board contains your message.

The option available at present is to look through all the existing posts on the board until

you �nd your posted message. Such an approach is time consuming and not optimal.

This application will allow users to inspect the content of the board in a easy and user

friendly way. The results will be displayed in a clear and convenient way for the users.

1.4 Report Structure

The sections in this report are organized in a way to �rstly familiarize the reader about the

technologies used, followed by providing information about UniBoard and the application

to be developed UniBoard Inspector. Later, the artifacts concerning the design of the

application and its implementation is provided. To terminate the report, the working

methods and the organization of the project is provided, followed by a conclusion and

scope for future development.

6

2 Technical Background

In this section, the basic knowledge that is required in order to understand the tech-

nologies used in the project is presented. You may skip this section if you are familiar

with the concept of web services, JavaEE web applications, cryptographic certi�cates

and digital signatures.

2.1 Web Services

Web services allow the communication between two devices over the Internet. The idea

of web services relies on the re-usability of programs and easy updates whenever changes

are made. It is a machine to machine interaction where one side acts as a client and the

other side acts as a service provider.

A web service has an interface which is in a machine-readable format that describes

the rules for communication. This interface is described in a WSDL (Web Service De-

scription Language) �le which is a XML format to describe the services provided by a

web service. The services are described as a collection of network endpoints or ports. A

client connecting to the web service may determine the operations available on the server

from the WSDL �le.

Figure 1: Providing and Consuming Web Services [1]

7

The service provider sends the WSDL �le to a directory called UDDI (Universal De-

scription, Discovery and Integration). The service requester contacts the UDDI to �nd

out the services provided and then contacts the service provider using the SOAP (Simple

Object Access Protocol) protocol over HTTP. [2] [3]

The application developed as a work of this project is a JavaEE web application. The

two types of JavaEE web service technologies are JAX-WS (Java API for XML Web

Services) and JAX-RS (Java API for RESTful Web Services). The web service provider

UniBoardService has been set up using JAX-WS technology and is the focus of the

following subsection.

2.1.1 JAX-WS

In JAX-WS technology the web services and clients communicate using XML. The calls

to the operations of the web service by the client and the responses are transmitted by

an XML-based protocol called SOAP (Simple Object Access Protocol). These SOAP

messages are transmitted over HTTP.

Figure 2: Communication between a JAX-WS Web Service and a Client [4]

With JAX-WS, the application developer does not have to deal with the complexity of

SOAP messages. The JAX-WS runtime does the conversion of API calls and responses to

and from SOAP messages. The web service operations are speci�ed by de�ning methods

in a Java class or interface. A WSDL generating tool exposes these methods from the

class as a web service. [2] [4]

8

2.2 JavaEE Web Application

The JavaEE platform provides a multi-tiered approach for implementing services where

the application logic is divided into the tiers. The client tier components run on the

client machine. The web and the business tier components run on the JavaEE server.

The information system tier runs on the database server. The �gure given below shows

the di�erent components contained in the di�erent tiers.

Figure 3: Multitiered Applications [5]

The tiers of interest to this project is the web and the business tiers. The web tier

9

contains the JSF (Java Server Faces) pages that is a Java speci�cation for building user

interfaces for web applications.

The business tier contains the Enterprise Beans where the logic of the application lies.

An Enterprise Bean receives and processes data from client programs. It can also retrieve

data and send it back to the client. [5] [6]

2.3 Certi�cates and Signatures

In this section, a brief explanation about cryptographic certi�cates and digital signatures

is provided. A digital certi�cate is a form of identi�cation in the digital world just like

passports and driver's licenses are in the real world. Just like a document that is signed

with a handwritten signature, in the digital world a digital signature is used to attest

the true identity of an entity.

Firstly, in order to understand digital certi�cates one needs to understand the concept

of public key cryptography. A person or entity who owns a digital certi�cate basically

owns a key pair consisting of a public key and its corresponding private key. The private

key can be considered as a secret that is exclusive to the owner of the certi�cate. The

public key is known by everyone. The question that arises is, how does one obtain these

key pairs i.e a certi�cate?

A certi�cate can be obtained from a certi�cation authority (CA) that provides you the

key pair. The key pair is generated by a series of mathematical calculations. You may

refer to the RSA algorithm for any further information on generating key pairs. An

entity that wishes to obtain a certi�cate provides information about itself to the CA. An

entity may represent a client or a server. The CA veri�es this information and issues a

certi�cate with the public and private key pair.

The aim of having a certi�cate is to secure the communication between two commu-

nicating parties through encryption and to prove the authenticity of the communicating

parties by signing the messages sent. Both encryption and digital signatures are math-

ematical operations that slightly di�er from one another with respect to the parameters

used. When two parties wish to communicate by sending encrypted messages, the sender

encrypts the message using the public key of the receiver. The receiving end decrypts

the message using his private key. Hence, the sender can be sure that the message can

be read only by the intended receiver, since only he possesses the private key to decrypt

10

the message.

But to what extent can one trust a certi�cate? When one obtains a certi�cate the

CA signs this certi�cate using its private key. The signing of the certi�cate by the CA

enables to verify the authenticity of the certi�cate. One can verify using the public key

of the CA if the certi�cate presented is indeed a certi�cate issued by the claimed CA.

This is important since one can trust a certi�cate only to the point that one can trust the

issuing certi�cation authority. Some examples of trusted CA's are VeriSign, GeoTrust

etc. [7] [8]

11

3 UniBoard

UniBoard is a secure public bulletin board where data can be stored. A message that is

posted to the board needs to follow the so called posting properties in order for it to be

considered as a valid post. These posting properties de�ne the structure of the messages

posted to the bulletin board. [9]

The bulletin board is sectioned and grouped. It is access controlled, ordered, chrono-

logical, append-only and allows certi�ed posting. Each of these properties is explained

below.

3.1 Properties of UniBoard

In this section, the posting properties are explained in detail.

• Sectioned: The bulletin board consists of multiple sections where related messages

are grouped together. These sections are equally shaped in structure. When posting

a message, the author has to provide the section to which the post belongs.

• Grouped: A section consists of multiple groups. When posting a message, the

author has to provide the group to which the message belongs. Messages belonging

to the same group are similar in shape and content. Every section has the same

set of group.

• Typed: In a grouped bulletin board, each group de�nes the type of the message

to be stored in the group. Messages of the de�ned type only are accepted and all

others are rejected.

• Access Controlled: In order to authorize only certain users to post messages to the

board, a message to be accepted by the board must be signed. The signature and

the public key must be included in the post. The set of authorized public keys is

known to the board and access is controlled by verifying the signature.

• Ordered: A sequence number called the rank is added by the board such that all

the published posts have a total order.

• Chronological: The board adds a time-stamp to every message posted to the board

in order to denote when the message was received by the board.

• Append-Only: In order to ensure that no posted message is removed from the

board, the board creates a hash value which is a function of the preceding post ad

other parameters. This value is added to the current post.

12

• Certi�ed Posting: Upon successful posting of a message, the board creates a sig-

nature and adds it to the post. The user receives a receipt from the board. [9]

3.2 The Two Basic Operations of UniBoard

UniBoard is a public bulletin board that is sectioned and grouped. It is typed, access

controlled, ordered, chronological and allows certi�ed posting. Review the previous sec-

tion for a detailed explanation of these posting properties if necessary. Although in this

project we do not deal with the post operation, in order to read from the board it is

important to know the structure and the nature of the information posted or published

to the bulletin board. The following sections describe the Post and the Get operations

that allow to publish and read the content of the bulletin board respectively. [9]

3.2.1 Post Operation

Data can be published to the bulletin board by calling the Post operation of the web ser-

vice interface UniBoardService. Messages posted on the board need to follow the posting

regulations for UniBoard in order for it to be considered as a valid message.

In order for a post to be valid, an author posting a message to UniBoard needs to

provide four other user attributes along with the message. These user attributes consti-

tute the following posting properties: Sectioned, Grouped, Typed and Access Controlled.

The message is received by UniBoard which in turn adds four board attributes to the

message. These board attributes constitute the following posting properties: Ordered,

Chronological, Append-Only and Certi�ed Posting.

Hence a valid post consists of a message, four user attributes and four board attributes.

A brief speci�cation of the user and board attributes follows below.

The user attributes consists of the following information:

• The Section: UniBoard de�nes a set of available sections. When posting a message

the author indicates the section for the message.

• The Group: Messages belonging to a group are similar in nature. The author

indicates the group for the message when posting it.

• The Type: Each group de�nes its own set of valid messages. A message of type

T and group G is valid if the type T belongs to the set of valid messages for the

group G.

13

• The Signature: The signature serves to control the access to the bulletin board. In

order to identify the author of a message, a digital signature is provided and the

corresponding public key.

The board attributes consists of the following information:

• The Order: A sequence number is added to the post so that all the messages

published on the board have an order.

• The Time-stamp: A time-stamp is added to the post to denote when the message

was received by the board.

• The Hash: In order to ensure that no previously posted messages can be removed

or changed a hash value is created which is a function of the previous post and

other parameters.

• The signature: All user and board attributes including the message is signed and

this signature is added to the post. [9]

3.2.2 Get Operation

The Get operation of the web service interface UniBoardService, allows to send a query

to the board and obtain the resulting posts that corresponds to the query. All messages

published on the bulletin board can be retrieved using the get operation. What is a

query and how is it constructed? A query Q is an object that represents the constraints

in the following format:

Q = Get posts WHERE constraint1 AND constraint2

A constraint or a search criteria can be constructed using the message, user attributes

and board attributes. In the case of UniBoard, a query that is sent to the board speci�es

additional properties such as the order and the number of results to be returned. [9]

14

3.3 UniBoard Inspector

Now that you are familiar with the concept of UniBoard, its operations and the posting

properties of the data stored to the board, lets proceed to see the form of data that

is queried by the application UniBoard Inspector and the format of the posts that are

stored to UniBoard.

3.3.1 Data Queried by the Application

UniBoard Inspector queries the board for information posted to the board in the context

of e-voting. The user can inspect the board for information concerning an election that

is being held on-line. Lets consider elections that are held in di�erent universities in

Switzerland. In order to set up an election one �rst de�nes information about an elec-

tion. Followed by de�ning the voters and the candidates in any order. Once the election

is open, the voters may cast their votes. These votes are encrypted before being posted

to the board. The votes are decrypted and �nally the result of the election is obtained.

The �gure given below describes the order in which the information for an election is

posted to the board.

Figure 4: Election Cycle

As mentioned earlier UniBoard is a sectioned and grouped bulletin board. In order to

put the above information of an on-line election, one would consider the di�erent uni-

versities to be the sections and the di�erent states of the election process to be the groups.

Lets consider the following three universities: Bern University of Applied Sciences BFH,

University of Bern Unibe and University of Zurich UZH. These universities form the three

15

sections. The di�erent groups will be formed by the information concerning an election

i.e, ElectionData, Candidates, Voters, Ballots, DecryptedVotes and ElectionResult.

Recall that a Post contains a message, Alpha attributes and Beta attributes. In the

following �gure, the di�erent groups are represented as object types in order to show the

content of the messages belonging to the di�erent groups.

Figure 5: Object Type Representation of the Groups

The following �gure shows a graphical representation of a structured bulletin board

with the three sections i.e, BFH, Unibe and UZH and the six groups i.e, ElectionData,

Candidates, Voters, Ballots, DecryptedVotes, ElectionResult.

Figure 6: UniBoard: A Sectioned and Grouped Bulletin Board.

16

3.3.2 Format of a Post

A post is a JSON (JavaScript Object Notation) message that stores all information as

attribute-value pairs. A post contains a message, user attributes and board attributes.

The JSON message for a post belonging to the group Voters is presented below:

Figure 7: JSON Message for Voters.

A list of such JSON messages are stored to the board for each of the di�erent sections

and groups. Querying the board for posts involves providing values for the di�erent

search parameters. For example, some of the possible search parameter names are sec-

tion, group, key, time-stamp,rank etc.

The JSON messages for posts belonging to the di�erent groups can be found in the

Annexe section.

17

4 Requirements Analysis and Design

The aim of requirements analysis and design is to have a well re�ected plan at the

beginning stage of the project that will help in the implementation of the project. The

requirements analysis is presented with the help of use cases that de�ne a step by step

procedure to obtain the functionalities desired by the application. The design is presented

with the help of mock-ups that provide a conceptual solution ful�lling the requirements.

4.1 Use Cases

The use cases help representing the di�erent operations that is supported by the system

and the interaction of the user with the system. In the following, the use case diagram

is presented followed by the description of the use cases.

4.1.1 Use Case Diagram

The use case diagram shown below identi�es the di�erent search methods that is sup-

ported by UniBoard Inspector and other functionalities.

Figure 8: Use Case Diagram UniBoard Inspector

In the following you will �nd the description of the use cases for each of the search

methods. Only the main success scenario is documented.

18

4.1.2 UC 1: View Post

Actor: User.

Preconditions: A list of posts are displayed in the viewer.

Postconditions: The user views the details of a post.

Main Success Scenario

1. The user interacts with a component of the application.

2. The details of the post which contains the section, group, rank, timestamp, public

key, board signature etc is displayed.

4.1.3 UC 2: Inspect Posts Using Basic Search

Actor: User.

Preconditions: The name of the section to be queried must be chosen.

Postconditions: The resulting posts are displayed in the viewer.

Main Success Scenario

1. The user provides the search parameters to query the board.

a) He provides the name of the section for which he would like to view all the

posts.

b) He provides the name of the group in the section for which he would like to

view the posts.

c) He provides a time interval to view all the posts that were inserted during this

time period.

d) He limits the number of results displayed in the viewer. If not a default limit

of 50 is chosen.

2. The posts corresponding to the query are obtained and displayed in the viewer.

4.1.4 UC 3: Inspect Posts Using Advanced Search

Actor: User.

Preconditions: One or more section names to be queried must be chosen.

Postconditions: The resulting posts are displayed in the viewer.

Main Success Scenario

1. The user provides the search parameters to query the board.

19

a) He provides one or more section names for which he would like to view all the

posts.

b) He may provide one or more groups belonging to these sections for which he

would like to view the posts.

c) He may provide a time interval to view all the posts that were inserted during

this period.

d) He may provide rank values to obtain all posts that are either equal to, less

than, more than or between the values.

e) He may provide a public key in order to obtain all the posts that were inserted

by himself using this public key or any other person to whom the key belongs

to.

f) He may limit the number of results displayed in the viewer. If not a default

limit of 50 is chosen.

2. The posts corresponding to the query are obtained and displayed in the viewer.

4.1.5 UC 4: Inspect Posts Using Public Key

Actor: User

Preconditions: None.

Postconditions: The resulting posts are displayed in the viewer.

Main Success Scenario

1. The user provides his public key to search for posts.

2. He may limit the number of results displayed in the viewer. If not a default limit

of 50 is chosen.

3. All posts that were posted using this public key is displayed in the viewer.

20

4.2 Mock-ups

In this section, the mock-ups for UniBoard Inspector is presented. The mock-ups corre-

spond to the di�erent search methods and functionalities presented in the use cases.

4.2.1 UniBoard Inspector Dashboard

The dashboard is the start page of the application. The dashboard consists of a title

bar, a side menu where the basic search parameters can be chosen to inspect the board

and a centrally placed viewer where the top 50 most recent posts that were posted to

the board is displayed.

Figure 9: UniBoard Inspector Dashboard

21

4.2.2 Inspection Using Basic Search

Below is the mock-up that shows the results of a search. The basic search parameters

are chosen by selecting a section, group, date and limit. The results of the query that is

sent to the board using the basic search parameters is displayed in the viewer.

Figure 10: Basic Search Results Page

22

4.2.3 Inspection Using Advanced Search

The advanced search provides more restriction compared to the basic search and allows

the user to �lter the posts more selectively.

By clicking on the Advanced Search link a search dialog box is opened where the ad-

vanced search parameters can be chosen. A list of sections and groups can be chosen.

The posts can be �ltered further by providing a time interval, rank values and public

key. The number of results can be limited by choosing a desired value for the limit.

Figure 11: Advanced Search Dialog Box

23

4.2.4 Inspection Using Public Key

The user can search for posts by copying and pasting the public key in a text area. This

allows a quick search for all posts that were posted using a public key.

Figure 12: Search by Public Key Dialog Box

24

4.2.5 View Post

The user may click on the View Post button in order to view the details of the selected

post. The entire message including the user attributes and the board attributes of the

post can be viewed.

Figure 13: The details of a post

25

5 Implementation

In this section, the artifacts supporting the realization of the web application UniBoard

Inspector is presented. The di�erent implementation details and the outcomes are pre-

sented with the help of Class Diagrams, System Sequence Diagrams, Domain Models,

Page Flow Diagrams etc. In the following sub-section the structure of the project is pre-

sented and the details of the project are further deepened as you continue to the other

sections.

5.1 UniBoard Inspector Project Components

UniBoard Inspector is a JavaEE web application. Hence it is a multi-tiered application.

The Java Server Faces pages are used to build the user interfaces for UniBoard Inspector.

The web tier contains the JSF pages. The search parameters entered by the user are

assigned to variables in the enterprise bean classes where validation is done if necessary.

The enterprise beans along with other classes contains the business logic of the applica-

tion.

The application communicates with UniBoard over a web service interface that is built

using the JAX-WS technology(Java API for XML Web Services). Refer to the �gure in

the next page.

26

Figure 14: Detailed Overview of Systems

27

5.2 Constructing a Query

The domain model below describes the classes that are used to build a Query object.

The Query object is sent to UniBoard using the get operation of the web service interface

UniBoardService. The list of posts corresponding to the query is obtained and displayed

in a viewer by UniBoardInspector.

Figure 15: Domain Model

A query is made up of one or more constraints, an order and a limit. A Constraint

object type is made up of an Identi�er object type and a corresponding Value type as-

signed to the Identi�er.

The Constraint type can be an Equal To, Less Than, More Than etc constraint type. The

Identi�er type can be an Alpha, Beta or Message Identi�er type. Recall that an Alpha

Identi�er contain information like the section and group to which a message belongs to.

A Beta Identi�er contains information added by the board like the timestamp and the

rank of a post in the given group. The Value types can be an Integer, String, Date etc

Value types.

Hence, a Constraint such as the following, ContraintA: The name of the section is BFH,

will be constructed using an Alpha Ident�er object and a String value type that contains

28

the name of the section(i.e. BFH). The constraint type itself is an EqualTo object type.

A query consists of one or more constraint objects, an Order object and and a Limit.

A query such as the following: Get all posts where ConstraintA, Order them by the most

recent and show only 50 of the results will be constructed using a Constraint object, an

OrderBy Date object and a Limit which is an Integer with value 50.

5.3 SSD System Sequence Diagrams

The System Sequence Diagrams describes how various classes interact with each other in

order to execute a functionality of the application. The user can inspect the content of the

board by using di�erent search methods. In this section, the System Sequence Diagrams

for the available search methods i.e, Basic Search, Advanced Search and Search By Public

Key is presented. Below you will �nd a brief introduction for each of the search methods

followed by the three system sequence Diagrams.

5.3.1 SSD Basic Search

In order to inspect the board using Basic Search, the user must provide a section for

which he would like to view all the posts. He optionally provides a group, a time period

to view the messages posted during this period and limits the number of results that is

returned by the board.

5.3.2 SSD Advanced Search

The user provides one or more sections for which he would like to inspect the board. He

provides groups, a rank interval, a time interval, the public key etc. The advanced search

provides a wider range of choices for the search parameters.

5.3.3 SSD Search by Public Key

The user provides the public key for which he would like to inspect the board in order

to view all the posts corresponding to this key. He optionally provides a date and time

interval and limits the number of results that is displayed.

The implementation of these three is shown with the help of the sequence diagram given

below.

29

Figure 16: SSD for Inspection Using Basic Search

30

Figure 17: SSD for Inspection Using Advanced Search

31

Figure 18: SSD for Inspection Using Public Key

32

5.4 Page Flow Diagram

The page �ow diagram of the application UniBoard Inspector is shown below. The arrows

show the interaction of the user with the application, such as clicking on a button or a

link. The blue ovals show the di�erent pages that are displayed by the application.

Figure 19: Page Flow Diagram for UniBoard Inspector

The home page of the application UniBoard Inspector is shown below. Screen shots of

the remaining pages are included in the Annexe section.

Figure 20: UniBoard Inspector Home Page

33

5.5 Exception Handling and Testing

In the following, a brief explanation of how error handling was done at the interface

and business logic levels is presented. An error or an exception that occurs during the

execution of the program changes the normal expected behavior of the program. This

requires processing and treating the occurred error.

The user interacts with the application and the parameters entered by the user is vali-

dated by the ValidatorBean. The ValidatorBean handles errors at the user interface level

and sends an appropriate error message to the user. The error messages are generated by

the the MessageFactory. Once the parameters are validated, the enterprise bean classes

communicate with the SearchService in order to obtain the search results corresponding

to the search parameters.

Figure 21: Exception Handling

Exceptions and errors encountered while building the query and connecting to the web

service are handled by the exception handlers at the business logic level of the application.

Hence, exception handling is done at the user interface and business logic levels.

34

The main functionalities of the application were tested with the help of unit tests. The

results of the tests shows that the application behaves as expected. The results of the

unit tests are shown below.

Figure 22: Test Results

35

The code coverage report is shown below. A coverage of around 50 percent is obtained.

This covers the code from the classes that handle the principle functionalities of the ap-

plication. The classes that have not been covered are the enterprise beans classes that

require a di�erent testing framework.

Figure 23: Code Coverage Report

5.6 Tools Used

The tools used to develop the application, design documents and to edit the report is

presented below.

• Development Environment: Netbeans 8.0 with Primefaces 5.

• Editing Design Documents: UMLet, Visual Paradigm, Balsamiq Mockups.

• Testing: Maven Code Coverage with Cobertura.

• Editing report: TexStudio LATEX.

36

6 Work Methods and Project Organization

A project such as a Bachelor thesis needs a considerable level of planning and organiza-

tion of the work. I have dedicated this section to brie�y present the working methods

and goals achieved during the semester.

An initial project plan was established at the start of the semester. Even though all

requirements cannot be fully collected in an initial plan, it was an advantage to have

a step-by-step plan and a time-line to guide the work done during the semester. The

supervision meetings took place once a week where ideas were discussed and progress

reports were submitted.

During the software development process attention was given to the design and cod-

ing was done in order to have a working software. Once a working functionality was

obtained, any required refactoring and testing of the code was done. The refactoring

involved better organization of the code, changes requested during the supervision meet-

ings and the incorporation of new ideas. Unit tests were done for the main functional

parts of the code. The software development consisted of a continuous process of coding,

refactoring and testing.

Equal importance was given to the project report as for software development. Con-

tent to the report was added periodically starting from the �rst week itself. Whenever

a new functionality of the software was obtained, documentation supporting the design

and the implementation was added.

In the following, you will �nd the project plan that was established at the start of

the semester. A complementary document showing the goals achieved every week is

presented as well, which notes down more precisely the work done during the week and

the deadlines that were met. It is more informative towards the technical aspects of the

project and in the progress of the project report.

37

6.1 Project Plan

Week 1, 15.09: 1. First meeting with supervisor.

2. General discussion of project, ideas and work to be done for the coming week.

3. System set-up.

Week 2, 22.09: 1. Work organization planning.

2. Report writing: Introduction, Project Goal.

3. First version of mock-ups.

Week 3, 29.09: 1. Second version of mock-ups.

2. Report writing: The Get operations that will be made available, the

format of the request and response messages, json and json schema.

Week 4, 06.10: 1. Finalization of design with mock-ups.

2. Getting a �rst web service client side code running.

3. Report writing.

Week 5-6: 1. Design the main page with JSF Primefaces.

13.10 - 20.10 a. Realization of page �ow according to the mock-ups.

b. Realization of the components contained in the web

pages (text �elds, buttons, tabular views etc).

2. Report writing.

20.10.2014: First Milestone. Completion of design.

Week 6-11: Coding and design.

27.10 - 01.12 a. Invoking web service with an appropriate query.

b. Obtain the JSON response and extract the parameters.

c. Display it to the user in a view which is clear and easy to understand.

26.11.2014: Second Milestone. Completion of Basic Search with error handling and unit tests.

Week 12, 08.12: Code Review and testing.

Report writing.

Week 13, 15.12: Code review and testing.

Report writing.

Week 14, 22.12: Code review and testing

Report writing.

31.12.2014: Third Milestone. Submission of �rst version of the report.

Week 15, 05.01: Revise all documents and deliverables according to feedback.

Week 16, 12.01: Submit project.

38

6.2 Weekly Goals Achieved

Week 1, 15.09: 1. System set-up.

Week 2, 22.09: 1. Report writing(Added sections Introduction and Project Goal)

2. Work organization plan.

Week 3, 29.09: 1. Example of a bulletin board.

2. Class diagram and graphical representation for the example.

3. First version of mock-ups.

4. Report writing (Added sections UniBoard, Basic Operations of UniBoard)

Week 4, 06.10: 1. Finalization of design with mock-ups.

2. Report writing (JSON and JSON Schema).

3. Started design of web pages with JSF.

Week 5, 13.10: Design of pages with JSF.

a. A data table to display the information.

b. De�nition of a temporary dataset to populate the data table.

c. A dialog with various components to provide search �elds for the advanced Search.

Week 6, 20.10: 1. Added new components and functionalities to existing pages.

a. "View Post" buttons for every post that is displayed in the data table.

b. A dialog to display detailed information for a post that appears by

clicking on the "View Post" button.

c. New components added to "Advanced Search" dialog.

2. Provided Json schemas for the test data.

Week 7, 27.10: Report writing (Added section: Web Services).

Refactoring of code to be more generic.

Added error handling for user interface.

Week 8, 03.11: Preparation for meeting with the expert (short presentation).

Added web service client(UniBoardClient.java) that queries the board.

Week 9, 10.11: Completion of web client with the di�erent queries for Basic Search.

Added Java classes QueryBuilder, ConstraintHandler and other helper classes.

Week 10, 17.11: Report writing: added section design documents.

Added unit tests for java classes.

Added error handling for java classes.

Week 11-12, Worked on basic search, Code refactoring, Unit tests,

22.11 - 31.11: End of Basic search

Week 13-16, Completed Advanced Search and Search by Public Key.

07.12 - 14.01: Final report.

39

7 Conclusion

The aim of the project was very clear and the ideas of how to achieve them as well. This

helped in the organization of the work and in meeting the goals that were set for the

project without any major di�culties. The work of this project gave me a deeper insight

on the existing technologies such as web services, web applications, message formats,

communication protocols and querying a NoSQL database.

The application UniBoard Inspector developed as a work of this project is an independent

web application but at the same time has dependencies with the research project Uni-

Board. This needed some amount of integration with respect to the project UniBoard.

Hence, working on this project helped me gain considerable knowledge and understand-

ing of the already existing system UniBoard.

Since UniBoard is a public bulletin board, the messages that are posted to the board are

public messages and they can be viewed by anyone without any security concerns. The

application UniBoard Inspector sends a query to the board and displays the resulting

posts in a viewer. A question that arises is about the authenticity of the data displayed

by the application. This can be easily veri�ed since every post contains a digital signa-

ture from the board. By using the corresponding public key one can verify if the post

was returned by the board and not by a third party that intercepted the communication.

Veri�cation of the board signature in order to con�rm that the content displayed by

the application is indeed the content returned by the board is a functionality that can

be implemented as a future development of this project.

40

8 Annexes

8.1 UniBoard Inspector User Interfaces

In this section, the di�erent web user interfaces of the application UniBoard Inspector is

presented.

8.1.1 View Post Dialog

Figure 24: View Post Dialog

41

8.1.2 Advanced Search Dialog

Figure 25: Advanced Search Dialog

42

8.1.3 Search by Public Key Dialog

Figure 26: Search by Public Key Dialog

43

8.1.4 Basic Search Results Page

Figure 27: Basic Search Results Page

44

8.2 JSON Messages

The JSON messages for all the di�erent groups are listed below.

8.2.1 JSON Message for the Post Candidate

The corresponding JSON message for the post Candidate is presented below:

Figure 28: JSON Message for Candidate.

45

8.2.2 JSON Message for the Post ElectionData

The corresponding JSON message for the post ElectionData is presented below:

Figure 29: JSON Message for ElectionData

46

8.2.3 JSON Message for the Post Ballot

The corresponding JSON message for the post Ballot is presented below:

Figure 30: JSON Message for Ballot.

47

8.2.4 JSON Message for the Post DecryptedVote

The corresponding JSON message for the post DecryptedVote is presented below:

Figure 31: JSON Message for DecryptedVote.

48

8.2.5 JSON Message for the Post ElectionResult

The corresponding JSON message for the post ElectionResult is presented below:

Figure 32: JSON Message for ElectionResult

49

Declaration of Authorship

I hereby certify that I composed this work completely unaided, and without the use

of any other sources or resources other than those speci�ed in the bibliography. All text

sections not of my authorship are cited as quotations, and accompanied by an exact

reference to their origin.

Name: Priya Bianchetti

Date: 16-01-2015

Signature:

50

References

[1] Providing and Consuming Web Services

https://help.sap.com/saphelp_erp2005/helpdata/en/d6/

f9bc3d52f39d33e10000000a11405a/frameset.htm

[2] Java API for XML Web Services.

http://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services

[3] Web Services Description Language.

http://en.wikipedia.org/wiki/Web_Services_Description_Language

[4] Creating a Simple Web Service and Clients with JAX-WS

http://docs.oracle.com/javaee/6/tutorial/doc/bnayn.html

[5] Distributed Multitiered Applications http://docs.oracle.com/javaee/6/

tutorial/doc/bnaay.html

[6] JavaServer Faces http://en.wikipedia.org/wiki/JavaServer_Faces

[7] James F.Kurose, Keith W.Ross, Computer Networking, Fifth Edition

[8] Understanding Digital Certi�cates http://technet.microsoft.com/en-us/

library/bb123848(v=exchg.65).aspx

[9] E. Dubuis, S. Fischli, R. Haenni, S. Hauser, R. E. Koenig, P. von Bergen, UniVote

System Speci�cation, Technical Report, Bern University of Applied Sciences, Biel,

Switzerland

51

https://help.sap.com/saphelp_erp2005/helpdata/en/d6/f9bc3d52f39d33e10000000a11405a/frameset.htm
https://help.sap.com/saphelp_erp2005/helpdata/en/d6/f9bc3d52f39d33e10000000a11405a/frameset.htm
http://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://docs.oracle.com/javaee/6/tutorial/doc/bnayn.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnaay.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnaay.html
http://en.wikipedia.org/wiki/JavaServer_Faces
http://technet.microsoft.com/en-us/library/bb123848(v=exchg.65).aspx
http://technet.microsoft.com/en-us/library/bb123848(v=exchg.65).aspx

	Introduction
	Present Situation
	Project Goal
	Contribution
	Report Structure

	Technical Background
	Web Services
	JAX-WS

	JavaEE Web Application
	Certificates and Signatures

	UniBoard
	Properties of UniBoard
	The Two Basic Operations of UniBoard
	Post Operation
	Get Operation

	UniBoard Inspector
	Data Queried by the Application
	Format of a Post

	Requirements Analysis and Design
	Use Cases
	Use Case Diagram
	UC 1: View Post
	UC 2: Inspect Posts Using Basic Search
	UC 3: Inspect Posts Using Advanced Search
	UC 4: Inspect Posts Using Public Key

	Mock-ups
	UniBoard Inspector Dashboard
	Inspection Using Basic Search
	Inspection Using Advanced Search
	Inspection Using Public Key
	View Post

	Implementation
	UniBoard Inspector Project Components
	Constructing a Query
	SSD System Sequence Diagrams
	SSD Basic Search
	SSD Advanced Search
	SSD Search by Public Key

	Page Flow Diagram
	Exception Handling and Testing
	Tools Used

	Work Methods and Project Organization
	Project Plan
	Weekly Goals Achieved

	Conclusion
	Annexes
	UniBoard Inspector User Interfaces
	View Post Dialog
	Advanced Search Dialog
	Search by Public Key Dialog
	Basic Search Results Page

	JSON Messages
	JSON Message for the Post Candidate
	JSON Message for the Post ElectionData
	JSON Message for the Post Ballot
	JSON Message for the Post DecryptedVote
	JSON Message for the Post ElectionResult

