

Verifying complex ballots with a single (constant size) verification code

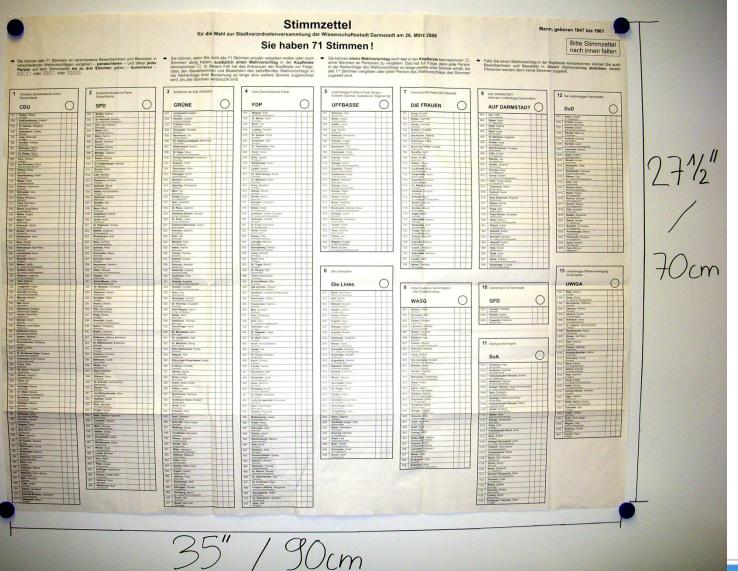
Rui Joaquim <u>rui.joaquim@uni.lu</u>

e-Voting PhD days, 14-15 November 2013, Muenchenwiler

Introduction

- The verification of a vote encryption is needed to:
 - Guarantee that a valid vote is encrypted.
 - Important for both mix-net and homomorphic tallying.
 - Guarantee that the voter's choice is encrypted correctly.
 - Important for cast-as-intended and end-to-end verifiability.
- A complex ballot is one that has a large number of valid vote possibilities.

Complex ballot example 1 Darmstadt, Germany



Complex ballot example 2 Australia

Related work

	This work		Groth 2005		Helios	
	Р	V	Р	V	Р	V
Approval K-out-of-N	2N [+ 3N]	4N [+ 5N]	6K + 4	3K + 3	6N + 2	8N + 4
(0-N)-out-of-N	4N [+ 3N]	8N [+ 5N]	2N + 4	N + 3	6N	8N
(K _{min} -K _{max})-out- of-N	2(N + K _{max} -K _{min}) [+ 3N]	4(N + K _{max} -K _{min}) [+ 5N]	-	-	6N + 4(K _{max} -K _{min}) – 2	8N + 4(K _{max} -K _{min})
Weighted (divisible) Vote = T shares	2TN [+3N]	4TN [+5N]	10N + 4 *	5N + 2 *	(4T-2)(N+1)	4T(N+1)
Rank K-out-of-N	2N [+2KN +3N]	4N [+4KN +5N]	4N + 2 **	2N + 3 **	6(N+1)K + 2K	8(N+1)K + 4K

* Does not support a limit per candidate.

** Ranks all candidates and limits the homomorphic tally to the Borba method.

Related work – continuation I

- Groth 2005
 - Complexity grows exponentially with the number of candidates and the number of votes allowed in the homomorphic tally.
 - Large number of candidates => large exponents size
 - Exponent size ~ log₂ (#votes) * # candidates
 - Requires a crypto system with an easy decryption of E(m1+m2, r1+r2) = E(m1, r1)E(m2, r2), e.g. Paillier.
 - Size of decryption table for 256 bits EC-ElGamal 10 candidates, 100 votes -> more than 25TB!!!

In practice, does not work for complex elections.

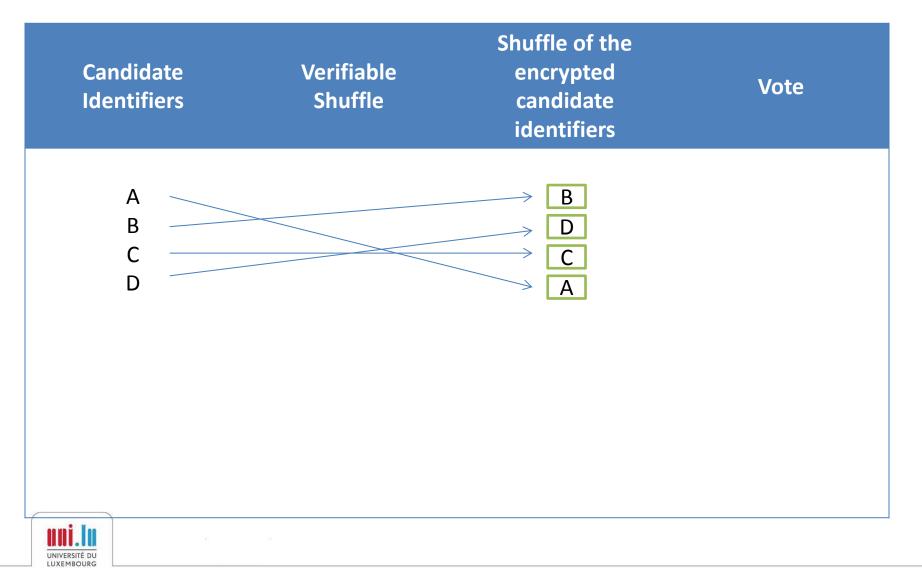
Related work – continuation II

- Helios
 - Direct mix-net tallying is expensive because it involves one ciphertext per each possible option (candidate).
 - The number of ciphertexts can be reduced by using more expensive proofs.
 - No mix-net solution for ranked candidates.
 - Larger proofs.

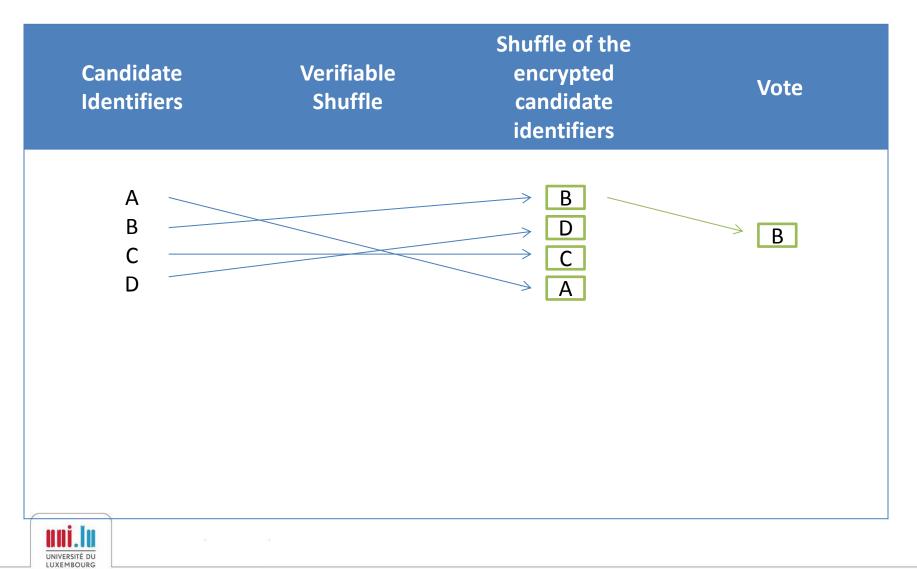
A NEW WAY TO VERIFY AN ENCRYPTION OF A COMPLEX VOTE

- 1. Create a verifiable shuffle of a set of candidate identifiers.
 - Bayer and Groth 2012
- 2. Create the vote encryption directly from the shuffle output.
- 3. Add ZKPK to check ballot structure constrains.

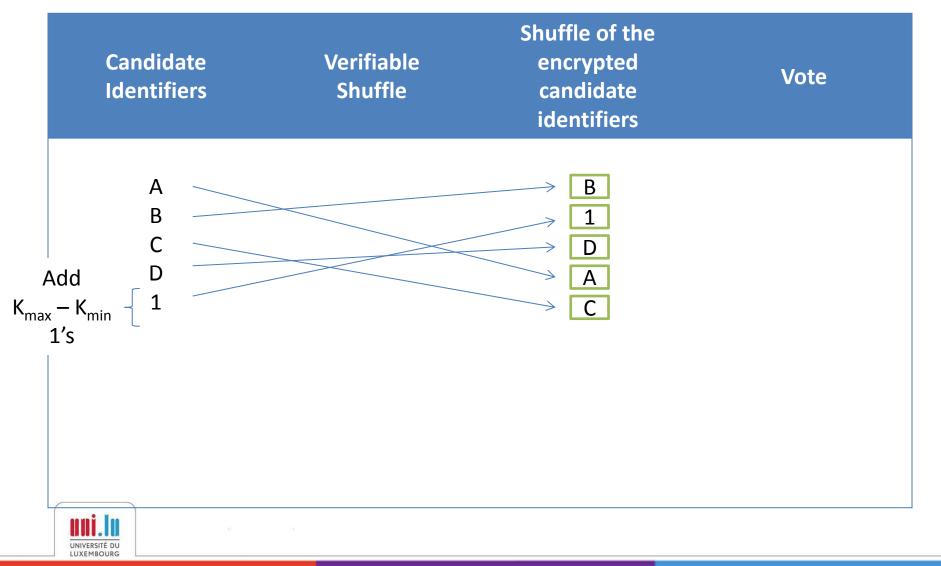
Approval voting



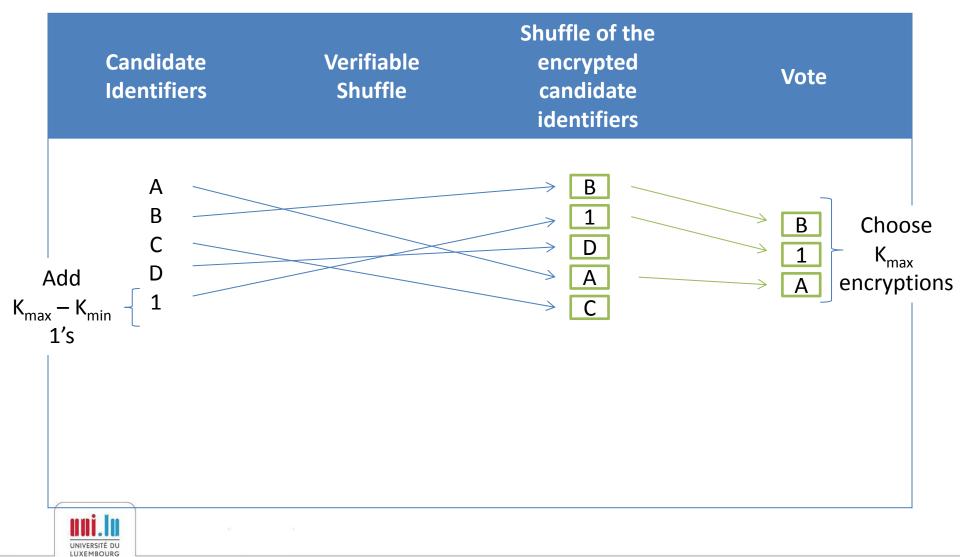
Approval voting



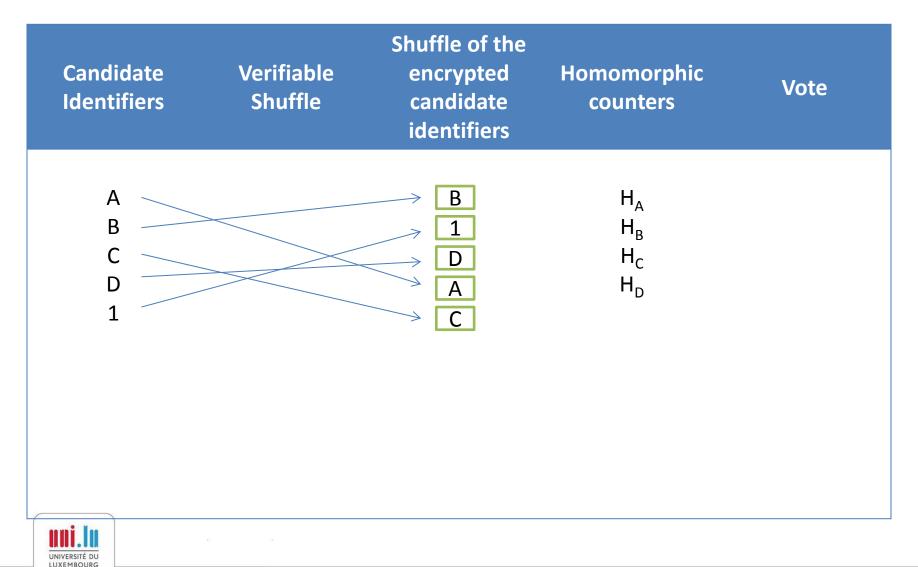
Approval voting [K_{min}, K_{max}] Example : [2-3]



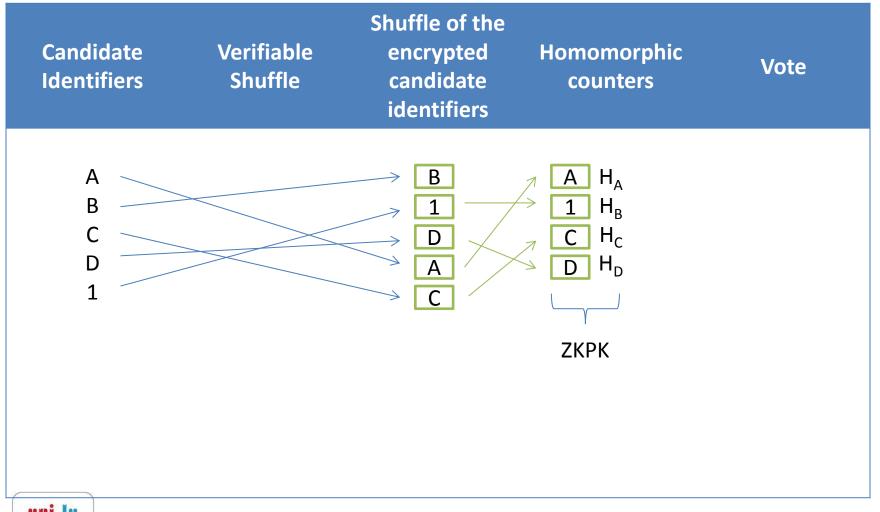
Approval voting [K_{min}, K_{max}] Example : [2-3]



Approval voting with homomorphic tally

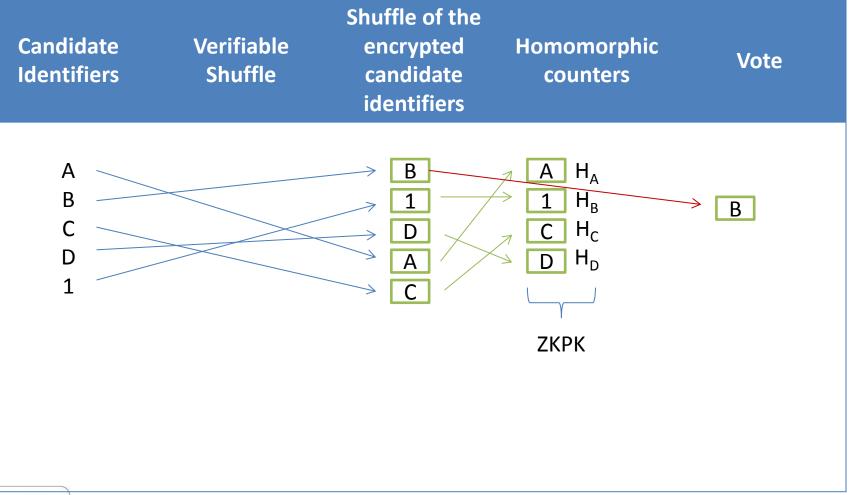


Approval voting with homomorphic tally



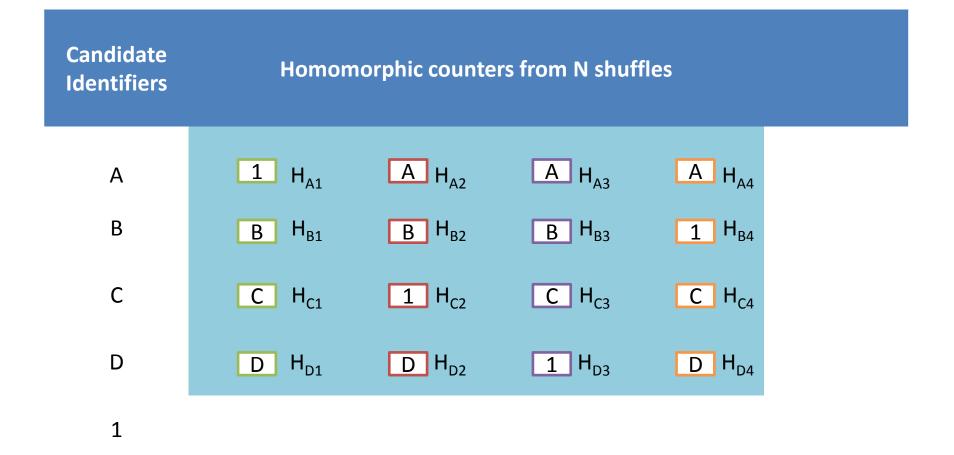
UNIVERSITÉ DU

Approval voting with homomorphic tally



securityandtrust.lu

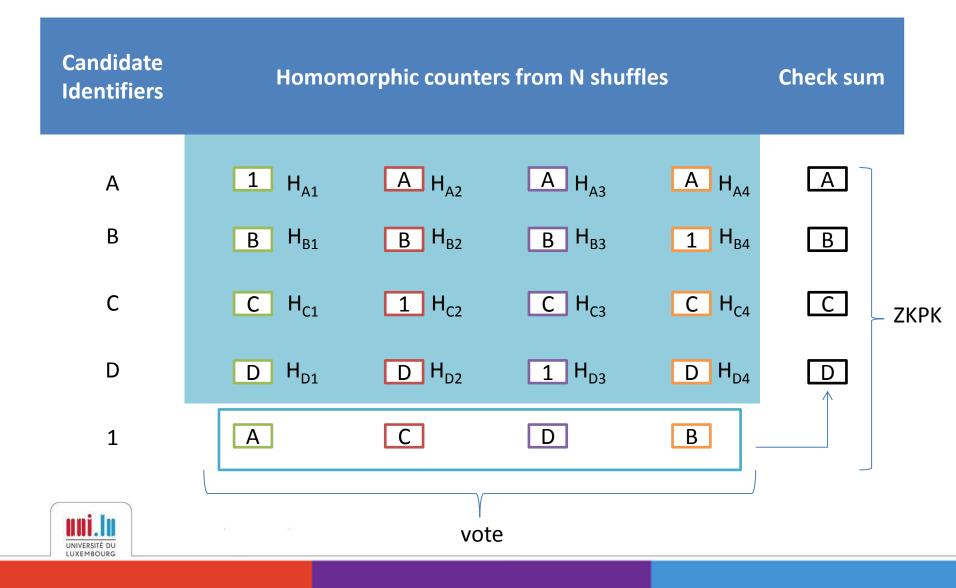
Ranked voting with homomorphic tally



Ranked voting with homomorphic tally

Candidate Homomorphic counters from N shuffles **Identifiers** A H_{A2} A H_{A3} 1 H_{A1} A H_{A4} Α В H_{B1} B H_{B2} B H_{B3} 1 H_{B4} B C H_{C3} С C H_{C1} 1 H_{c2} C H_{C4} <u>1</u> H_{D3} D H_{D1} D H_{D2} D D H_{D4} 1 Α С D В vote UNIVERSITÉ DU LUXEMBOURG

Ranked voting with homomorphic tally

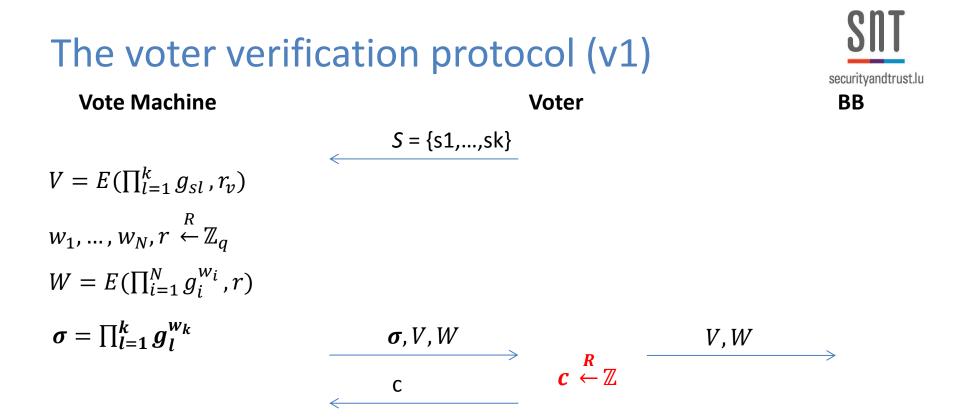


A SINGLE VERIFICATION CODE FOR A COMPLEX BALLOT

Preliminaries

- Consider:
 - The usual ElGamal setup.
 - One independent generator (gi) for every choice/candidate i.
 - Let $V = E(\prod_{l=1}^{k} g_{jl}, r_v)$ be the homomorphic product of the k ciphertexts that compose the vote.

The voter verification protocol (v1)Vote MachineVoterBB $S = \{s1, ..., sk\}$ $V = E(\prod_{l=1}^{k} g_{sl}, r_v)$ $w_1, ..., w_N, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ $W = E(\prod_{l=1}^{N} g_l^{w_l}, r)$ $\sigma = \prod_{l=1}^{k} g_l^{w_k}$ σ, V, W

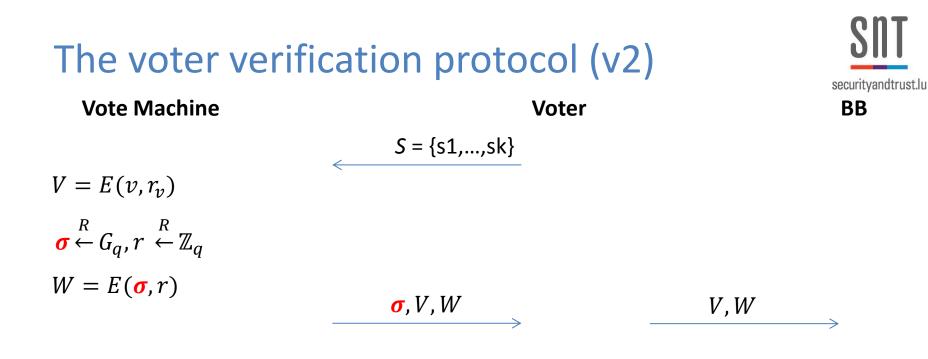


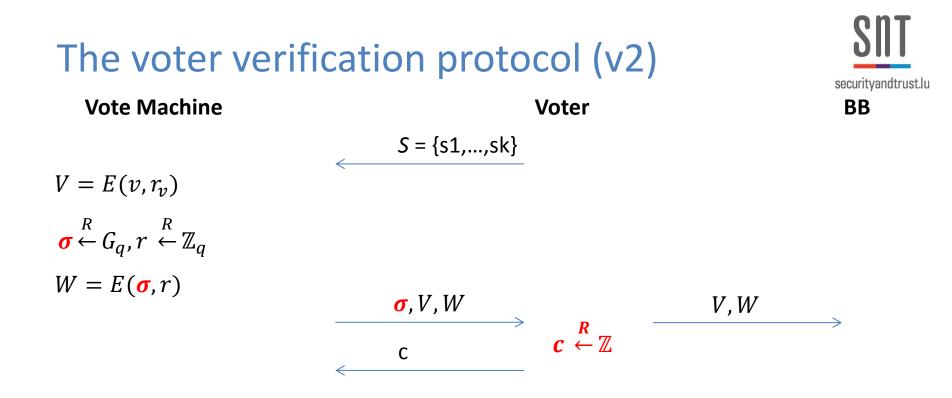
The voter verification protocol (v1) securityandtrust.lu **Vote Machine** Voter BB *S* = {s1,...,sk} $V = E(\prod_{l=1}^{k} g_{sl}, r_{v})$ $w_1, \ldots, w_N, r \stackrel{R}{\leftarrow} \mathbb{Z}_a$ $W = E(\prod_{i=1}^{N} g_i^{w_i}, r)$ $\sigma = \prod_{l=1}^{k} g_{l}^{w_{k}}$ σ, V, W *V*,*W* $c \stackrel{R}{\leftarrow} \mathbb{Z}$ С $\forall s_i \in S: r_{si} = w_{si} + c$ $\forall l \notin S: r_l = w_l$ $P_r = ZKPK[W \otimes V^c = E(\prod_{i=1}^{r_i} g_i^{r_i}, r')]$ c, r_1, \dots, r_n, P_r $P_{r}!?$ $\sigma? = \left| \begin{array}{c} g_{si}^{r_{si}-c} \\ g_{si}^{r_{si}-c} \end{array} \right|$

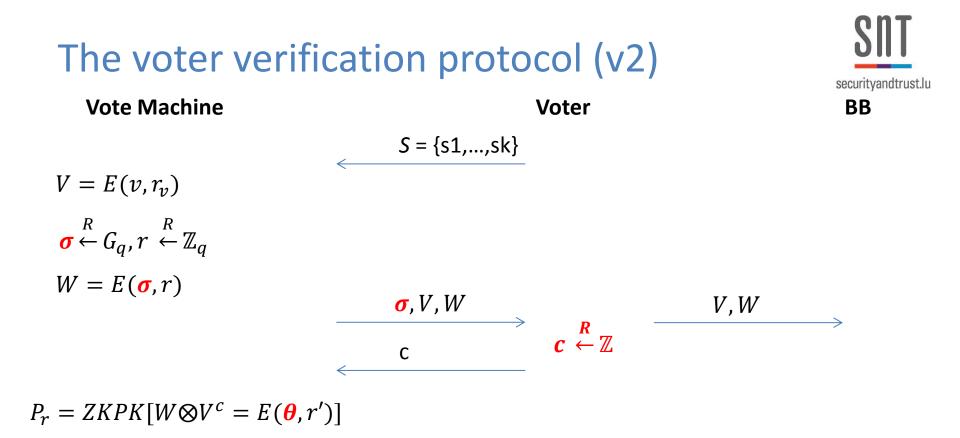
The voter verification protocol (v1) securityandtrust.lu **Vote Machine** BB Voter *S* = {s1,...,sk} $V = E(\prod_{l=1}^{k} g_{sl}, r_{v})$ $w_1, \ldots, w_N, r \stackrel{R}{\leftarrow} \mathbb{Z}_a$ $W = E(\prod_{i=1}^{N} g_i^{w_i}, r)$ $\sigma = \prod_{l=1}^{k} g_{l}^{w_{k}}$ $\boldsymbol{\sigma}, \boldsymbol{V}, \boldsymbol{W}$ V, W $c \stackrel{R}{\leftarrow} \mathbb{Z}$ С $\forall s_i \in S: r_{si} = w_{si} + c$ $\forall l \notin S: r_l = w_l$ $P_r = ZKPK[W \otimes V^c = E(\prod_{i=1}^{r_i} g_i^{r_i}, r')]$ c, r_1, \dots, r_n, P_r $P_{r}!?$ $\sigma ? = \left| \begin{array}{c} g_{si}^{r_{si}-c} \\ g_{si}^{r_{si}-c} \end{array} \right|$

The voter verification protocol (v1) securityandtrust.lu **Vote Machine** BB Voter *S* = {s1,...,sk} $V = E(\prod_{l=1}^{k} g_{sl}, r_{v})$ $w_1, \ldots, w_N, r \stackrel{R}{\leftarrow} \mathbb{Z}_a$ $W = E(\prod_{i=1}^{N} g_i^{w_i}, r)$ $\sigma = \prod_{l=1}^{k} g_{l}^{w_{k}}$ σ, V, W *V*,*W* $c \stackrel{R}{\leftarrow} \mathbb{Z}$ С $\forall s_i \in S: r_{si} = w_{si} + c$ $\forall l \notin S: r_l = w_l$ $P_r = ZKPK[W \otimes V^c = E(\prod_{i=1}^{r_i} g_i^{r_i}, r')]$ c, r_1, \dots, r_n, P_r $P_{r}!?$ $\sigma ? = \left| \begin{array}{c} g_{si}^{r_{si}-c} \\ g_{si}^{r_{si}-c} \end{array} \right|$

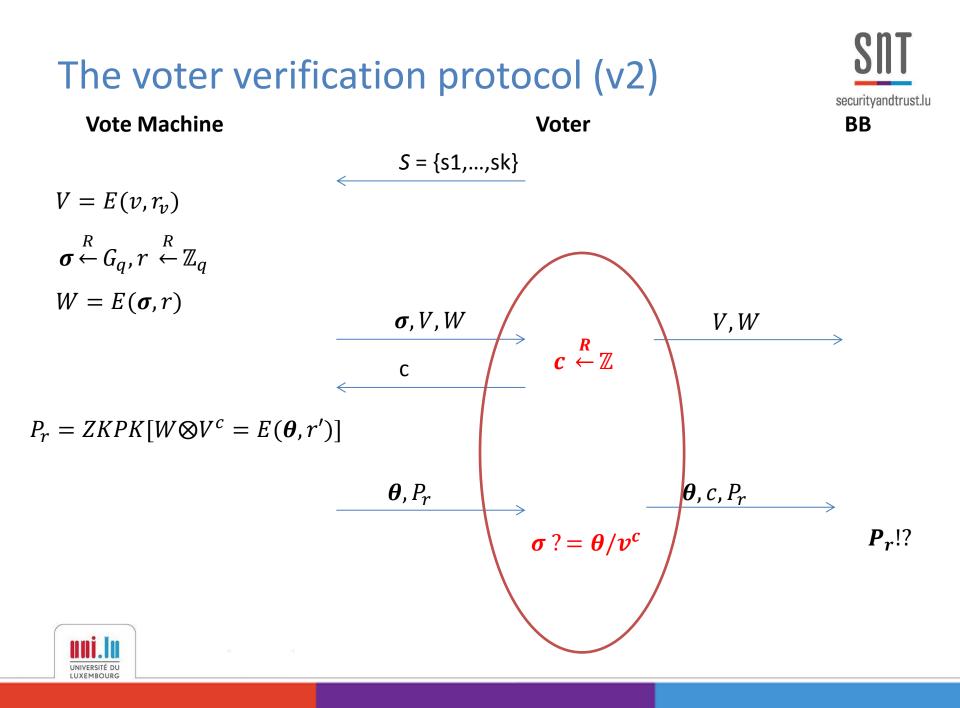
UNIVERSAL A VERIFICATION CODE

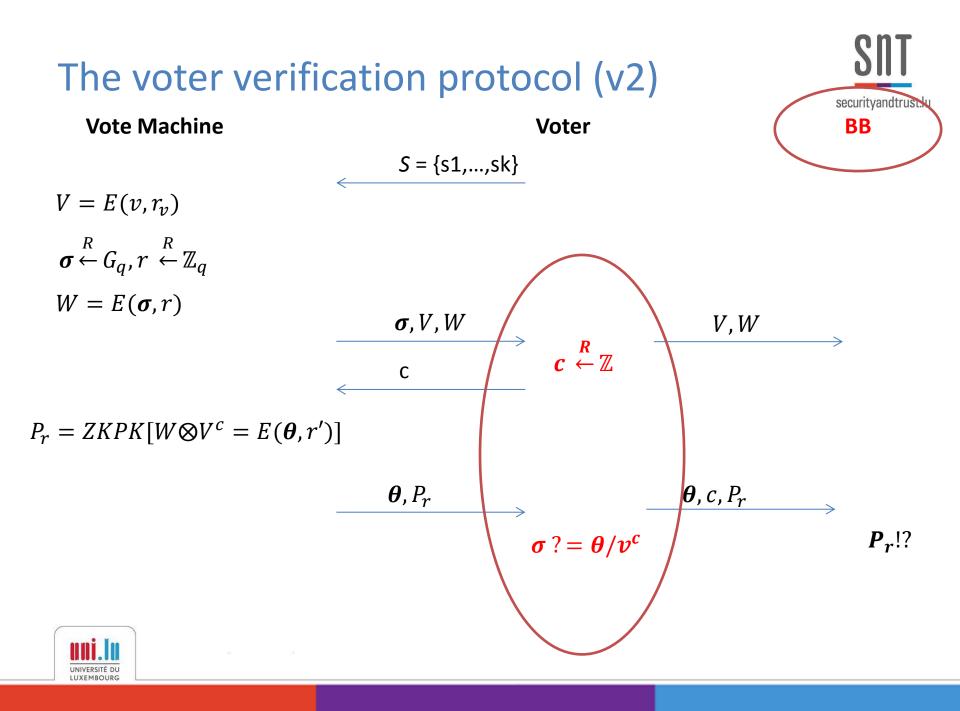


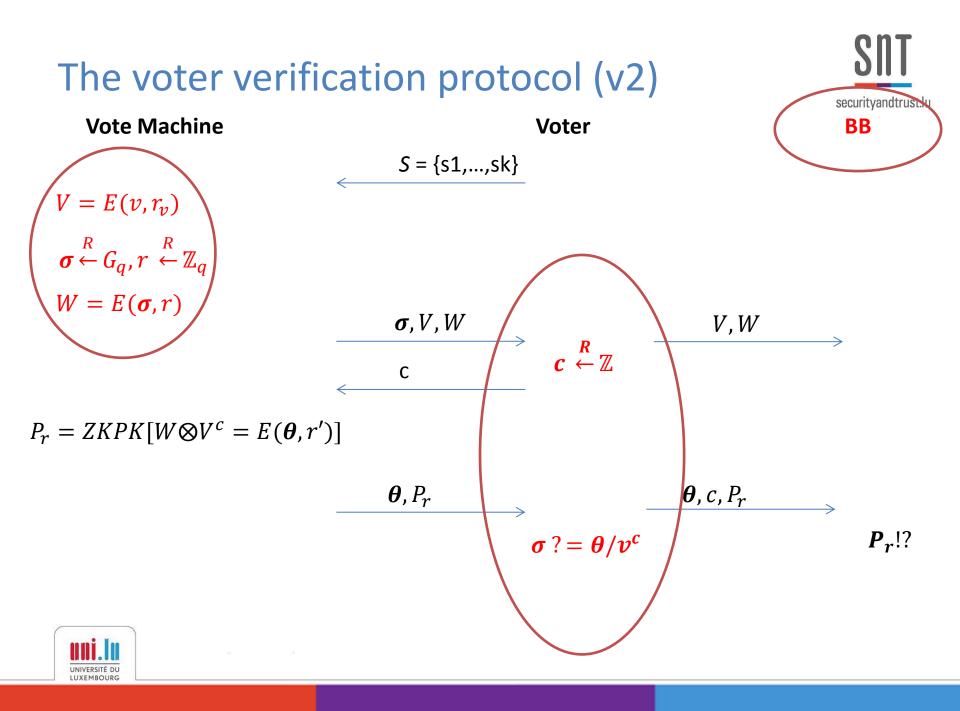




$$\begin{array}{c} \boldsymbol{\theta}, P_r \\ \hline \boldsymbol{\sigma} ? = \boldsymbol{\theta} / \boldsymbol{v}^c \\ \end{array} \begin{array}{c} \boldsymbol{\theta}, c, P_r \\ \boldsymbol{\sigma} ? = \boldsymbol{\theta} / \boldsymbol{v}^c \end{array} \end{array}$$







Thank you!

Questions?

