Verifiable Mixing

Philipp Locher

Bern University of Applied Sciences

E-Voting PhD Days 2013

November 2013

Outline

1. Introduction
2. Mix-Nets - an Overview
3. Preliminaries
4. Wikström/Terelius's Mix-Net Revisited
5. Conclusion

Introduction

UniVote: Verifiable Electronic Voting over the Internet

- Internet voting system for student board elections at Swiss universities
- Project started in 2012
- First elections in spring 2013
- https://www.univote.ch

Introduction

UniVote is end-to-end (E2E) verifiable and offers anonymized vote casting [Neff01, HS11].

Mixing of public keys:

Introduction

Before the final decryption and tally phase, the ballots are mixed.

- Late registration (students cannot be forced to register before voting phase)
- Anonymous channel cannot always be expected
- No performance issue (only a few thousand ballots)

Mix-Nets - an Overview

Cha81

- Anonymous Channel $E_{1}\left(r_{1} \| E_{2}\left(r_{2} \| \ldots E_{k}\left(r_{k}\left\|B_{i}\right\| E_{B_{i}}(m)\right)\right)\right)$
PIK93
- No ciphertext length expansion
- ElGamal, partially decryption/re-encryption

SK95

- First universal verifiable mix-net

Mix-Nets - an Overview

Mix-Nets - an Overview

Why Wikström/Terelius's Mix-Net?

- Not covered by patents
- Kind of modularity
- As efficient as other efficient mix-nets

Outline

1. Introduction

2. Mix-Nets - an Overview

3. Preliminaries

4. Wikström/Terelius's Mix-Net Revisited
5. Conclusion

Preliminaries

ElGamal Encryption

$$
\operatorname{Enc}(m, r)=\left(g^{r}, y^{r} m\right)
$$

- Private key x and public key $p k=(g, y), g$ is a generator of G_{q} and $y=g^{x}$
- $m \in G_{q}$ and $r \in_{R} \mathbb{Z}_{q}$
- Multiplicative homomorphic:
$\operatorname{Enc}\left(m_{1}, r_{1}\right) \cdot \operatorname{Enc}\left(m_{2}, r_{2}\right)=\operatorname{Enc}\left(m_{1} m_{2}, r_{1}+r_{2}\right)$
- Re-encryption: $\operatorname{ReEnc}\left(c, r^{\prime}\right)=c \cdot \operatorname{Enc}\left(1, r^{\prime}\right)$

Preliminaries

Pedersen Commitment

$$
\operatorname{Com}(m, r)=g^{r} \cdot h^{m}
$$

- g, h independently chosen generators of G_{q}
- $m \in \mathbb{Z}_{q}$ and $r \in_{R} \mathbb{Z}_{q}$
- Perfectly hiding and computationally binding
- Additive homomorphic:
$\operatorname{Com}\left(m_{1}, r_{1}\right) \cdot \operatorname{Com}\left(m_{2}, r_{2}\right)=\operatorname{Com}\left(m_{1}+m_{2}, r_{1}+r_{2}\right)$

Preliminaries

Generalized Pedersen Commitment

$$
\operatorname{Com}(\bar{m}, r)=g^{r} \cdot h_{1}^{m_{1}} \cdots h_{N}^{m_{N}}=g^{r} \prod_{i=1}^{N} h_{i}^{m_{i}}
$$

- g, h_{1}, \ldots, h_{N} independently chosen generators of G_{q}
- $\bar{m}=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{Z}_{q}^{N}$ and $r \in_{R} \mathbb{Z}_{q}$
- Perfectly hiding and computationally binding
- Additive homomorphic:

$$
\operatorname{Com}\left(\bar{m}_{1}, r_{1}\right) \cdot \operatorname{Com}\left(\bar{m}_{2}, r_{2}\right)=\operatorname{Com}\left(\bar{m}_{1}+\bar{m}_{2}, r_{1}+r_{2}\right)
$$

Preliminaries

Matrix Commitment

$$
\operatorname{Com}(M, \bar{r})=\left(\operatorname{Com}\left(\left(m_{i, 1}\right)_{i=1}^{N}, r_{1}\right), \cdots, \operatorname{Com}\left(\left(m_{i, N}\right)_{i=1}^{N}, r_{N}\right)\right)
$$

- $M=\left(m_{i, j}\right) \in \mathbb{Z}_{q}^{N \times N}$ is a $N \times N$ - matrix
- Perfectly hiding and computationally binding
- $\operatorname{Com}(M, \bar{r})^{\bar{e}}=\operatorname{Com}(M \bar{e},\langle\bar{r}, \bar{e}\rangle)$

Preliminaries

Zero-Knowledge Proof of Knowledge

Preliminaries

Zero-Knowledge Proof of Knowledge

 Example: Schnorr ProtocolProver \mathcal{P} proves to verifier \mathcal{V} knowledge of x such that $y=g^{x}$

$$
\begin{array}{llc}
\mathcal{P} & & \mathcal{V} \\
\hline r \in_{R} \mathbb{Z}_{q} & & \\
t=g^{r} & & \\
s=r+c x & c \in_{R} \mathbb{Z}_{q} \\
& s & g^{s} \stackrel{?}{=} t y^{c}
\end{array}
$$

Preliminaries

Maurer's Generic Preimage Proof 1/2

- Consider two groups (G, \star) and (H, \otimes) of finite order.
- If a function $\phi: G \rightarrow H$ is a homomorphism such that

$$
\phi(a \star b)=\phi(a) \otimes \phi(b)
$$

than \mathcal{P} can prove knowledge of x such that $y=\phi(x)$ using the following protocol:

Preliminaries

Maurer's Generic Preimage Proof 2/2

$$
\begin{aligned}
& \begin{array}{lll}
\mathcal{P} & & \mathcal{V} \\
r \in_{R} G & & \\
t=\phi(r) & t & c \in_{R} \mathcal{C} \\
s=r \star c^{x} & c & \\
& &
\end{array} \\
& \phi(s) \stackrel{?}{=} t \otimes y^{c}
\end{aligned}
$$

Preliminaries

Proof of Knowledge of Several Values (Composition)

- Consider N group homomorphisms

$$
G_{i} \rightarrow H_{i}: x \mapsto \phi_{i}(x) .
$$

- The composition

$$
\begin{aligned}
& G_{1} \times \cdots \times G_{N} \rightarrow H_{1} \times \cdots \times H_{N}: \\
& \quad\left(x_{1}, \ldots, x_{N}\right) \mapsto \phi\left(x_{1}, \ldots, x_{N}\right)=\left(\phi_{i}\left(x_{i}\right), \ldots, \phi_{N}\left(x_{N}\right)\right)
\end{aligned}
$$

is also a group homomorphism and so prover \mathcal{P} can prove in one stroke knowledge of x_{1}, \ldots, x_{N} such that $y_{i}=\phi_{i}\left(x_{i}\right)$.

Preliminaries

Proof of Equality of Embedded Values (Common Preimage)

- Consider N group homomorphisms with the same domain G

$$
G \rightarrow H_{i}: x \mapsto \phi_{i}(x)
$$

- The prover \mathcal{P} can prove knowledge of x such that $y_{i}=\phi_{i}(x)$ using the function

$$
\begin{aligned}
G \rightarrow H_{1} \times \cdots & \times H_{N}: \\
& x \mapsto \phi(x)=\left(\phi_{i}(x), \ldots, \phi_{N}(x)\right) .
\end{aligned}
$$

Outline

```
1. Introduction
2. Mix-Nets - an Overview
3. Preliminaries
```

4. Wikström/Terelius's Mix-Net Revisited
5. Conclusion

Wikström/Terelius's Mix-Net Revisited

[Wik09] A Commitment-Consistent Proof of a Shuffle

- Offline part: Commit to a permutation matrix and proof that it is indeed a permutation matrix.
- Online part: Shuffle the input batch and give a commitmentconsistent proof of a shuffle.
[TW10] Proofs of Restricted Shuffles
- Restricting the set of permutations.
- A new proof of a shuffle based on a permutation matrix.

Wikström/Terelius's Mix-Net Revisited

An $N \times N$ - matrix M is a permutation matrix if there is exactly one non-zero element in each row and column and if this non-zero element is equal to one.

Example:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right)
$$

If M_{π} is a permutation matrix for the permutation π then

$$
M_{\pi} \cdot \bar{x}=\bar{x}^{\prime}=\left(x_{\pi(1)}, \ldots, x_{\pi(N)}\right)
$$

Wikström/Terelius's Mix-Net Revisited

Theorem (Permutation Matrix) [TW10]
Let $M=\left(m_{i, j}\right)$ be an $N \times N$ - matrix over \mathbb{Z}_{q} and $\bar{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a list of variables. Then M is a permutation matrix if and only if

$$
\prod_{i=1}^{N}\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\prod_{i=1}^{N} x_{i} \quad \text { and } \quad M \overline{1}=\overline{1}
$$

m_{i} denotes the i-th row vector of M and $\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\sum_{j=1}^{N} m_{i, j} x_{j}$ the inner product of \bar{m}_{i} and \bar{x}

Wikström/Terelius's Mix-Net Revisited

Recall the property of a matrix commitment:

$$
\operatorname{Com}(M, \bar{s})^{\bar{e}}=\operatorname{Com}(M \bar{e},\langle\bar{s}, \bar{e}\rangle)
$$

If M is a permutation matrix then $M \bar{e}=\bar{e}^{\prime}=\left(e_{\pi(1)}, \ldots, e_{\pi(N)}\right)$ and $\operatorname{Com}(M, \bar{s})^{\bar{e}}$ is a publicly computed commitment to the permuted \bar{e} - vector based on the commitment to M.

Wikström/Terelius's Mix-Net Revisited

Proof of Knowledge of Permutation Matrix (offline) $1 / 2$

Common Input: Matrix commitment c_{π} Private Input: Permutation matrix M_{π} and \bar{s} such that $c_{\pi}=\operatorname{Com}\left(M_{\pi}, \bar{s}\right)$.

1. \mathcal{V} chooses $\bar{e} \in \mathbb{Z}_{q}^{N}$ randomly and hands \bar{e} to \mathcal{P}
2. \mathcal{P} computes $v=\langle\overline{1}, \bar{s}\rangle, w=\langle\bar{e}, \bar{s}\rangle$ and $\bar{e}^{\prime}=M_{\pi} \bar{e}$.
3. \mathcal{V} outputs the result of
Σ-proof $\left[\left.\begin{array}{c}v, w \in \mathbb{Z}_{q} \\ \bar{e}^{\prime} \in \mathbb{Z}_{q}^{N}\end{array} \right\rvert\, \operatorname{Com}(\overline{1}, v)=c_{\pi}{ }^{\overline{1}} \wedge \operatorname{Com}\left(\bar{e}^{\prime}, w\right)=c_{\pi}{ }^{\bar{e}} \wedge \prod_{i=1}^{N} e_{i}^{\prime}=\prod_{i=1}^{N} e_{i}\right]$

Wikström/Terelius's Mix-Net Revisited

Proof of Knowledge of Permutation Matrix (offline) 2/2

The Σ-proof of the proof of knowledge of permutation matrix can be transformed into a generic preimage proof:

$$
\begin{aligned}
& \mathbb{Z}_{q}^{2 N+3} \rightarrow G_{q}^{N+3}:\left(v, w, \bar{r}, d, \bar{e}^{\prime}\right) \mapsto \phi_{\text {offline }}\left(v, w, \bar{r}, d, \bar{e}^{\prime}\right)= \\
& \quad\left(\operatorname{Com}(0, v), \operatorname{Com}\left(\bar{e}^{\prime}, w\right), g^{r_{1}} c_{0}^{e_{1}^{\prime}}, \ldots, g^{r_{N}} c_{N-1}^{e_{N}^{\prime}}, \operatorname{Com}(0, d)\right)
\end{aligned}
$$

With additional private input: Randomness $\bar{r} \in \mathbb{Z}_{q}^{N}$ and $d=d_{N}$ and $d_{i}=r_{i}+e_{i}^{\prime} d_{i-1}$ for $i=2, \ldots, N$ with $d_{1}=r_{1} . c_{i}=g^{r_{i}} c_{i-1}^{e_{i}^{\prime}}$ and $c_{0}=h$.

Wikström/Terelius's Mix-Net Revisited

Commitment-Consistent Proof of a Shuffle (online) 1/2
Common Input: Permutation matrix commitment c_{π} and ciphertexts (ElGamal) $u_{1}, \ldots, u_{N}, u_{1}^{\prime}, \ldots, u_{N}^{\prime} \in\left(G_{q} \times G_{q}\right)$.
Private Input: Permutation π and randomness $\bar{r} \in \mathbb{Z}_{q}^{N}$ such that $u_{i}^{\prime}=\operatorname{ReEnc}\left(u_{\pi(i)}, r_{\pi(i)}\right)$.

1. \mathcal{V} chooses $\bar{e} \in \mathbb{Z}_{q}^{N}$ randomly and hands \bar{e} to \mathcal{P}
2. \mathcal{P} computes $w=\langle\bar{e}, \bar{s}\rangle, r=\langle\bar{e}, \bar{r}\rangle$ and $\bar{e}^{\prime}=M_{\pi} \bar{e}$.
3. \mathcal{V} outputs the result of
Σ-proof $\left[\left.\begin{array}{c}r, w \in \mathbb{Z}_{q} \\ \bar{e}^{\prime} \in \mathbb{Z}_{q}^{N}\end{array} \right\rvert\, \operatorname{Com}\left(\bar{e}^{\prime}, w\right)=c_{\pi}{ }^{\bar{e}} \wedge \prod_{i=1}^{N}\left(u_{i}^{\prime}\right)^{e_{i}^{\prime}}=\operatorname{ReEnc}\left(\prod_{i=1}^{N}\left(u_{i}\right)^{e_{i}}, r\right)\right]$

Wikström/Terelius's Mix-Net Revisited

Commitment-Consistent Proof of a Shuffle (online) 3/3
The Σ-proof of the proof of knowledge of permutation matrix can be transformed into a generic preimage proof:

$$
\begin{aligned}
\mathbb{Z}_{q}^{N+2} \rightarrow G_{q}^{3}:\left(r, w, \bar{e}^{\prime}\right) & \mapsto \phi_{\text {online }}\left(r, w, \bar{e}^{\prime}\right)= \\
& \left(\operatorname{Com}\left(\bar{e}^{\prime}, w\right), \prod_{i=1}^{N}\left(u_{i}^{\prime}\right)^{e_{i}^{\prime}} \operatorname{Enc}(1,-r)\right)
\end{aligned}
$$

Conclusion

Conclusion and Questions

