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UniVote: Verifiable Electronic Voting over the Internet

> Internet voting system for student board elections at Swiss
universities

» Project started in 2012
» First elections in spring 2013

> https://www.univote.ch
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UniVote is end-to-end (E2E) verifiable and offers anonymized vote
casting [Neff01, HS11].

Mixing of public keys:
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Before the final decryption and tally phase, the ballots are mixed.

> Late registration (students cannot be forced to register before

voting phase)
» Anonymous channel cannot always be expected

» No performance issue (only a few thousand ballots)
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Chad1| _ Anonymous Channel

Ei(n||Ex(r2]| - - - Ex(r«l|Bil|Es,(m))))

PIK93 - No ciphertext length expansion

- ElGamal, partially decryption/re-encryption

SK95 - First universal verifiable mix-net
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— an Overview
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Why Wikstrom/Terelius's Mix-Net?
» Not covered by patents
» Kind of modularity

» As efficient as other efficient mix-nets
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3. Preliminaries
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~ Preliminaries

ElGamal Encryption

Enc(m,r) = (g",y"m)

v

Private key x and public key pk = (g, y), g is a generator of
Ggand y = g*

v

me Gg and r €g Zg

v

Multiplicative homomorphic:
Enc(my, r1) - Enc(ma, rn) = Enc(mimy, ri + r2)

v

Re-encryption: ReEnc(c,r') = c- Enc(1,r')
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~ Preliminaries

Pedersen Commitment

Com(m,r)=g"-h™

v

g, h independently chosen generators of G,
m e Zq and r €g Zg

v

v

Perfectly hiding and computationally binding

v

Additive homomorphic:
Com(my, r1) - Com(my, rn) = Com(my + ma, r1 + )
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Generalized Pedersen Commitment

N
Com(i, r)=g" - h{™ .- AN = ng h
i=1

> g, hi,..., hy independently chosen generators of Gq
> m=(m,...,my) €ZY and r €g Zq
>

Perfectly hiding and computationally binding

v

Additive homomorphic:
Com(my, r1) - Com(my, rn) = Com(my + My, . + )
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Matrix Commitment

Com(M, F) = (Com((mi1)iLy, n1), -+, Com((min)iLy, rn))

» M= (mij) EZQ’XN isa N x N - matrix
» Perfectly hiding and computationally binding
» Com(M,F)® = Com(ME, (F, €))
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Zero-Knowledge Proof of Knowledge
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Zero-Knowledge Proof of Knowledge
Example: Schnorr Protocol

Prover P proves to verifier VV knowledge of x such that y = g*
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~ Preliminaries

Maurer’s Generic Preimage Proof 1/2

» Consider two groups (G, ) and (H,®) of finite order.
» If a function ¢ : G — H is a homomorphism such that

¢(axb) = ¢(a) © ¢(b)

than P can prove knowledge of x such that y = ¢(x) using
the following protocol:
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Maurer’s Generic Preimage Proof 2/2
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Proof of Knowledge of Several Values (Composition)

» Consider N group homomorphisms
Gi — H; : x — ¢i(x).
» The composition

G1X--'XGN—>H1X~~-XHNZ

(Xl, N ,XN) — ¢(X1, . 7XN) = ((ﬁ,‘(X,‘), ey ¢N(XN))

is also a group homomorphism and so prover P can prove in
one stroke knowledge of xi, ..., xy such that y; = ¢i(x;).
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Proof of Equality of Embedded Values (Common Preimage)

» Consider N group homomorphisms with the same domain G
G — H;: x— ¢i(x).

» The prover P can prove knowledge of x such that y; = ¢;(x)
using the function

G— Hy x---xXHpy:

X = §(x) = (6i(x), -, ¢ (x))-
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4. Wikstrom/Terelius's Mix-Net Revisited
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-rém/TereIius’s Mix-Net Revisited

[Wik09] A Commitment-Consistent Proof of a Shuffle

» Offline part: Commit to a permutation matrix and proof that
it is indeed a permutation matrix.

» Online part: Shuffle the input batch and give a commitment-
consistent proof of a shuffle.

[TW10] Proofs of Restricted Shuffles
> Restricting the set of permutations.

» A new proof of a shuffle based on a permutation matrix.
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-m/TereIius's Mix-Net Revisited

An N x N - matrix M is a permutation matrix if there is exactly
one non-zero element in each row and column and if this non-zero
element is equal to one.

Example:
0 01 X1 X3
1 00 X2 = X1
010 X3 X2

If M, is a permutation matrix for the permutation 7 then

M7r x=x% = (X7r(1)7 . ,Xﬂ-(N))
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-/Terelius's Mix-Net Revisited

Theorem (Permutation Matrix) [TW10]
Let M = (m; ;) be an N x N - matrix over Zq and X = (x1,...,Xxn)
be a list of variables. Then M is a permutation matrix if and only if

N N

H(n_‘l,',)_(> = HX,' and Mi = i

i=1 i=1

m; denotes the i-th row vector of M and (r;, X) = ZJN:1 mj ; X; the inner
product of m; and X
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-Terelius's Mix-Net Revisited

Recall the property of a matrix commitment:
Com(M,5)¢ = Com(Me, (3, &)
If M is a permutation matrix then M& = & = (ex(1);-- -, ex(n))

and Com(M,35)¢ is a publicly computed commitment to the
permuted € - vector based on the commitment to M.
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-jm/TereIius’s Mix-Net Revisited

Proof of Knowledge of Permutation Matrix (offline) 1/2

Common Input: Matrix commitment ¢,
Private Input: Permutation matrix M, and 5 such that ¢, = Com(M,, 3).

1. V chooses & € ZQ’ randomly and hands & to P
2. P computes v = (1,5), w = (&,5) and & = M, é&.
3. V outputs the result of
) N N
Com(1,v) = c;* A Com(&',w) = c° A H e = H e

i=1 i=1

vV, W E Zq

¥ -proof l & c ZQ’
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-jm/TereIius’s Mix-Net Revisited

Proof of Knowledge of Permutation Matrix (offline) 2/2

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof:

Z§N+3 — G¢;V+3 : (Va w, F7 d’ él) = ¢off/ine(vv w, F7 da él) =

(Com(O, v), Com(&',w),g" cgi, . ,gr"’c,f,’,v_l, Com(0, d))

With additional private input: Randomness 7 € ZQ’ and d = dy and

di=ri+eld_qfori=2,....,Nwithdi=r.c=gc’,and g = h.
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-rém/TereIius’s Mix-Net Revisited

Commitment-Consistent Proof of a Shuffle (online) 1/2

Common Input: Permutation matrix commitment ¢, and ciphertexts
(ElGamal) u1, ..., un, uf, ..., upy € (Gg x Gg).

Private Input: Permutation 7w and randomness 7 € ZQ’ such that

u,f = ReEnc(u,r(,-), I‘ﬂ.(,-)).

1. V chooses & € ZQ’ randomly and hands é to P
2. P computes w = (€,5), r = (&,7) and & = M, é&.
3. V outputs the result of

N
Com(&,w) = c,° A H(u ReEnc(H(u,-)e’, r)

i=1 i=1

Zproof[rwEZ
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-Terelius's Mix-Net Revisited

Commitment-Consistent Proof of a Shuffle (online) 3/3

The X-proof of the proof of knowledge of permutation matrix can be
transformed into a generic preimage proof:

ZQHZ — Gg S (ryw, &) — doniine(r,w, &) =
N

(Com(é’, w), H(u,{)ef/ Enc(1, —r))

i=1
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Conclusion and Questions
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