
Developing a registration application for UniVote with

multiple identity provider access

Scalzi Giuseppe

Master of Science in Engineering, Project 1, Bern University of Applied Science, Biel/Bienne BE
2500, CH,

scalg1@bfh.ch

Abstract. This project aims to provide the study of web application that can be used
in front of the UniVote system, in order to have at the end a registration application
that can be used with many identity provider (a server that stores the identity of
a user, we will call it IdP) instead that only one. Di�erent security aspects must
be evaluated and taken in account when building such systems. Attacks like cross-
site request forgery or SQL-injections can easily compromise the integrity of a web
application. During this report we will explain the development of the application
and the di�erent countermeasures used in order to prevent web-based threats and
provide a working application.

Table of Contents

Developing a registration application for UniVote with multiple identity provider
access . 1

Scalzi Giuseppe

1 Introduction . 4
1.1 E-Voting . 4
1.2 UniVote . 4
1.3 Actual situation . 4
1.4 Goal . 5

1.4.1 Use other IdPs . 6
1.4.2 Cryptographical Proof . 6
1.4.3 Digital certi�cates . 6

1.5 Structure of the Report . 6
2 Web Security Aspects . 6

2.1 SQL Injections . 7
2.2 Cross-Site Request Forgery . 7

3 Technical Implementation . 8
3.1 Technologies . 8

3.1.1 OAuth . 8
3.1.2 SAML . 9
3.1.3 PHP . 10
3.1.4 SPKAC . 10
3.1.5 OpenSSL . 10
3.1.6 Digital Time-stamping Service . 10
3.1.7 Google Developers Console and Facebook Developer 10
3.1.8 RSA, ElGamal and DSA . 10

3.2 Application Overview . 12
3.2.1 Index Page . 12
3.2.2 Redirection Page . 12
3.2.3 Generation Page . 12
3.2.4 Directory Tree . 13

3.3 Authentications . 14
3.3.1 Facebook . 14
3.3.2 Google+ . 15
3.3.3 Shibboleth . 17
3.3.4 Mail . 18

3.4 Certi�cates Generation . 21
3.4.1 RSA Certi�cates . 21
3.4.2 ElGamal Certi�cates . 24

4 Results . 25
5 Future Work . 26
6 Conclusion . 26
7 Annexes . 27

7.1 Welcome Class . 27
7.2 Veri�cator Class . 31

7.3 Index Page . 38
7.4 Facebook Redirection Page . 39
7.5 Google+ Redirection Page . 40
7.6 Shibboleth Redirection Page . 42
7.7 Mail Redirection Page . 43
7.8 Certi�cate Generation Page . 44
7.9 DTS . 46

3

1 Introduction

In this chapter we will introduce the project by giving some background information. A
little introduction about e-voting and UniVote is given at the beginning because our project
is related with them. Then we explain how the actual situation looks like and at the end we
can �nd the goals our project must achieve.

1.1 E-Voting

An e-voting platform is a system that lets users to participate to an election that is com-
pletely digital. This means that we can cast our vote from every part of the world. E-voting
brings bene�ts such as the fact that everything is digitized and that an election can be cre-
ated and managed more easily than a paper based one. Along with these advantages, there
are also some problematic that are always present: is it really possible to vote and be sure
that no one has cheated, modi�ed or altered any vote during the whole process? To answer
these problems modern e-voting systems make strong use of cryptography to ful�ll require-
ments like the integrity of the data and the anonymity of involved parties. Next section will
introduce the e-voting system related to this project: UniVote.

1.2 UniVote

UniVote is an e-voting platform developed at the Bern University of Applied Science (BUAS)
by the e-voting group. This platform is used to perform electronic voting and it o�ers a great
level of security in order to meet the modern security standards in term of e-voting. UniVote
has been successfully used for some elections in the Swiss universities and it is always under
development (the latest version is UniVote 1.7) to assure to voters the maximal functionality
without losing anything in term of security. As it stands today, a user must �rst register to the
system in order to cast a vote during an election. This is done by a registration application
that at the end of the registration process generate a digital certi�cate to identify the user.
After this registration phase the user can vote using the UniVote platform.

1.3 Actual situation

Here we want to give an overview of the existing registration application that is being used.
The actual the registration system works only with an IdP, that is the SWITCHaai system
used in the Swiss universities. So only users from Swiss schools can take part to an election
held with the UniVote system.

4

The following image illustrates better the situation:

Fig. 1. �The actual registration �ow�

The explanation of the �gure is the following:

1. During step one, the client wants to register to UniVote so he surfs to the address of the
registration application.

2. In step two, the registration application redirects the user to the IdP, in this case the
SWITCHaai. At this point the user can insert log-in data.

3. Step three is where after checking the validity of the log-in data, the IdP redirects the
user back to the registration application. The registration application knows that the
user has an identity.

4. During the last step, the registration application creates a digital certi�cate with the
data obtained from the IdP. This certi�cate is then stored in the UniVote system and
sent back to the client.

After this little explanation of the registration application, in the next section we want
to describe the goals of our project in relation to actual situation.

1.4 Goal

During this project we have to provide a study and a possible implementation of a new
registration application with the following properties:

� give the possibility to use other IdPs
� get cryptographical proofs from the IdP stating that identities really come from the
right IdP

� generate a digital certi�cate after that the user has been identify correctly

We now give a description of each goal.

5

1.4.1 Use other IdPs The �rst goal of our project is to extend to others IdPs the
authentication phase. So if at today there is only the possibility to use the SwitchAAI with
the new registration application it will be possible at the end to use:

� Shibboleth (SwitchAAI)
� Facebook
� Google
� a mail server

For the �rst one we will use a Shibboleth installation to simulate the SwitchAAI platform
because we don't have access to it. So a user will be redirected to a page where he has to
insert a user name and a password to prove his identity. For the second and the third the
behavior is quite the same as the �rst one, log-in with user name and password to Facebook
and respectively Google servers.

Generally the �rst three IdPs will communicate with the registration application after a
successful authentication so that we are able to identify users.

For the last one, the mail server things are di�erent. Instead of redirecting the user to
the IdP log-in page, the registration application will send an e-mail with an activation code
to the speci�ed recipient. If the user is able to get the activation code from the e-mail then
we can say that is authenticated to a mail server and has an identity.

1.4.2 Cryptographical Proof The second goal is two get a cryptographical proof from
the listed IdP so that we can verify that the identities really come from them. This proof
can be a digital signature that we can verify prior the digital certi�cate generation.

1.4.3 Digital certi�cates At the end of the authentication phase the registration ap-
plication must generate a digital certi�cate for the authenticated user. The application will
get data needed to generate the certi�cate from the IdP used to log-in.

To conclude this paragraph we can say that the time budget for this project is a semester
with Dr. Benoist as supervisors. No particular development method has been used.

1.5 Structure of the Report

The following sections of the report are organized as follows: the next one is about the
security aspects involved during this project, after that we will talk about the technical
implementation of the application. We will give details about the technologies involved and
how the application works. The �Results� section will give an idea of the �nal result using
some screen shots. At the end we give the conclusions. In the �Annexes� section you will
�nd the code of the application.

2 Web Security Aspects

Before going into the technical aspects we would like to give some insight about the web
security aspects involved. As reference we can use the OWASP Top 10, a chart of the ten
most dangerous web security threats.

In particular we focus our attention to these threats:

� SQL Injections
� Cross-Site request forgery attacks

6

2.1 SQL Injections

An SQL injection occurs when a malicious user pass to a form a string of data that can
change the behavior of the SQL query behind the form. This kind of attacks are nowadays
the most frequent and we want to be sure that our application is not a�ected by them.

In general we have to escape any eventual parameters that comes from a GET or POST
request inside a query. This can be done manually but there are library that can do this
automatically leading to a better escape of an eventual malicious string. In our application
we use the PDO library to interface with the MySQL database.

So we developed a class (DB.php) that can automatically use the PDO library when we
query the database, A little code snippet can show this:

public function query($queryString, $values = null) {

$stmt = $this->conn->prepare($queryString);

if ($values != null) {

$stmt->execute($values);

} else {

$stmt->execute();

}

return $stmt->fetch(PDO::FETCH_ASSOC);

}

The �prepare� statement is used optimize and prepare the query to be executed . Then we
pass the values as an associative array in the �execute� function. In this way PDO escapes
automatically any parameter in the query avoiding problems with possibles injections of
unwanted character.

2.2 Cross-Site Request Forgery

A Cross-Site Request Forgery (CSRF) is a type of attack that occurs when the browser of
a logged-on victim sends forged HTTP requests to a web application, including authenti-
cation information. The vulnerable web application thinks that these requests come from a
legitimate user and it executes the request.

An example scenario can be:

� A is logged-on on his e-banking web site and receives an e-mail from B with a link to a
low-cost �ight site.

� This low-cost �ight web site contains a tag with source http://a-ebanking.

com/mymoney.php?withdraw=100, A doesn't see this and she sends an unintentional
request to her e-banking withdrawing 100$.

� The e-banking web site thinks that the request really comes from A because it also
receives the authentication information and proceeds to the withdrawal.

To avoid this kind of automation, the e-banking has to include in every sensitive request
a token that is used to identify the request.

In our application we use two techniques: captchas and token. In particular, with the
OAuth protocol (explained in the �Technologies� subsection) we can use a parameter called
�state� during the authenticate request to identify the �ow of information. Captcha can also
help to prevent these attacks because one has to �rst con�rm the code shown in an image
before proceeding.

7

http://a-ebanking.com/mymoney.php?withdraw=100
http://a-ebanking.com/mymoney.php?withdraw=100

3 Technical Implementation

In this chapter we explain the technologies used during this project as well as the imple-
mentation of the registration application. We begin with the di�erent technologies involved.

3.1 Technologies

Here we give a brief description of each technology used in this project. This because we
want to give to the reader an introduction before going into the real implementation and
without this introduction it will be di�cult to understand the rest of the report.

3.1.1 OAuth OAuth is an open standard used for authentication purposes. With this
protocol we are able to access users' data without knowing the user name and the password
they used to authenticate to a particular service like Facebook. So our application will be
capable to obtain the access to user data (like e-mail or user ID) after that he is successfully
authenticated to the chosen service. We do not explicitly use OAuth rather we use the
software development kit (SDK) of Facebook and Google that make use of OAuth. The
actual version of OAuth is the 2.0 and we can see how it works:

Fig. 2. �The OAuth authentication process. Source http://www.mutuallyhuman.com/blog/2013/

05/09/choosing-an-sso-strategy-saml-vs-oauth2/.�

8

http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/
http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/

In this illustration our application plays the role of �Resource Server� while the IdP can
be Facebook or Google. In OAuth there are some security measure that can be used: for
example to protect against CSRF attacks we can use a parameter called �state� to guarantee.
This make OAuth a valid choice.

3.1.2 SAML The Security Assertion Markup Language (SAML) is an XML-based open
standard that is used to exchange authentication and authorization data between parties[2].
With SAML we have quite the same situation as OAuth: the user wants to access a resource
on the service provider (SP) so he authenticates to an identity provider (IdP). The IdP will
then send an assertion to the service provider to prove the successful authentication so that
there is no need to provide user name and password. SAML is used by Shibboleth.

Here is the authentication process:

Fig. 3. �The SAML authentication process. Source http://www.mutuallyhuman.com/blog/2013/

05/09/choosing-an-sso-strategy-saml-vs-oauth2/.�

9

http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/
http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/

As the previous OAuth illustration, our server is the resource server.

3.1.3 PHP The programming language chose for the development is PHP. With PHP
we can easily include the di�erent SDK of Google and Facebook so that we are able to
communicate and get the di�erent data we need. We can also include the PHP library we
used:

� xmlseclibs: an XML security library . The main purpose of this library is to deal with
XML signatures and encryption and we use it to verify the SAML assertion generated
by the IdP. http://code.google.com/p/xmlseclibs/

� secureImage: library used to manage CAPTCHA. We use them in order to avoid that
an attacker can automatize the registration with for example a script. (http://www.
phpcaptcha.org/)

3.1.4 SPKAC The Signed Public Key and Challenge is a particular format for sending
certi�cation singing request to a server in order to create a client-side certi�cate. With this
technology we send an encoded public key that can be manipulated by OpenSSL in order
to create a digital certi�cate [3].

3.1.5 OpenSSL OpenSSL is the implementation of the SSL protocol and it is used to
manage X.509 certi�cates. We use OpenSSL to generate RSA keys and users' certi�cates.

3.1.6 Digital Time-stamping Service A digital time-stamping service (DTS) is used
to sign a document at a given time by a third party that we can identify as notary. We use a
DTS because with Facebook, Google+ and the mail authentication we don't obtain a proof
that we can later verify. So we generate our proof and we send it to the DTS and we will
obtain a signature that we can later verify with the public key of the notary. On the counter
part, with Shibboleth we obtain a SAML assertion digitally signed with the public key of
the IdP that has generated it so we can easily check its validity. During this project we have
build our DTS and you can �nd the code in the �Annexes� section (the implementation of
the DTS is very simple and must be replaced by a real DTS).

3.1.7 Google Developers Console and Facebook Developer The Google Developers
Console is a Google service used to give the access to the API to a speci�ed application.
When we enable a particular application in this console (the application can be for example
an URL on the web) we are telling to Google that this application has access to a set of API
that we can chose. These API can include for example the access to user data like e-mail or
user ID.

On the other side the Facebook Developer works in quite the same way.
We will obtain a shared secret that we have to include in the server side of our application

so that when we want to communicate with Google or Facebook, they will recognize our
application as a trusted one, letting us to get useful information.

3.1.8 RSA, ElGamal and DSA These three elements are asymmetric algorithms used
to encrypt/decrypt or sign data. RSA (Rivest, Shamir, Adleman) is known because it em-
ploys as security measure the fact that is hard to factorize a given number into prime

10

http://code.google.com/p/xmlseclibs/
http://www.phpcaptcha.org/
http://www.phpcaptcha.org/

numbers. This algorithm is very used when we speak about X.509 certi�cates. ElGamal,
from the creator Taher Elgamal, uses the discrete log problem as security measure and the
last crypto-system, DSA (Digital Signature Algorithm) is a standard for digital signatures.
DSA is very similar to ElGamal when we compare for example the parameters that has to
be chosen or the fact that is also based on discrete log problems.

11

3.2 Application Overview

In this section of the report we would like to give an overview of the new registration
application by explaining in a general way how the application works.

3.2.1 Index Page For the duration of the project the address of the application is
https://localhost/ so when the user types this address the index page will be displayed.

In the index page we can �nd the four authentications mechanisms. For Facebook,
Google+ and Shibboleth we have to click on the provided link and the user will be redirected
to the respective server where he can authenticate himself.

3.2.2 Redirection Page When the user has successfully authenticated to an IdP it will
be redirected to our registration application. Each authentication system has it own page,
this because each of them works in a di�erent way. For Google+ and Facebook we cannot
use their authentication system if we don't create an �application� on their platform and
when we create this application we have to specify a �redirection URI� used to redirect the
user after a successful authentication. For the mail authentication system we simply send
the URI via e-mail and for Shibboleth we can also chose the URI we want so we have chosen
to have four di�erent URIs in order to keep things separated from each other:

� Facebook: https://localhost/fb/
� Google+: https://localhost/gplus/
� Mail: https://localhost/mail/
� Shibboleth: https://localhost/shib/

In these four pages, the cryptographical proof will be checked and stored in order to
be sure that the identity really comes from the IdP. For Facebook, Google+ and the mail
system we create the proof and then we send it to a DTS that can sign this proof so that
we can later verify it. The DTS will send the signature back to our application so we will
be capable to check the validity. In the case of Shibboleth we don't use the DTS because
we have a SAML assertion that can be veri�ed using the public key of the IdP that has
generated it.

3.2.3 Generation Page After the veri�cation of the proof we show a form for generating
a digital certi�cate (X.509) so that the authenticated user can obtain one. The form will
be submitted to the �gen.php� page that after the various security checks will generate and
send back to the client a certi�cate. We explain in details the generation of the certi�cate
in the dedicated section �Certi�cates Generation�.

We can resume the di�erent pages involved using this illustration:

12

Fig. 4. �The pages of the application.�

3.2.4 Directory Tree Here we have the directory tree of the application:

|-- project1

| |-- class

| | |-- DB.php

| | |-- Verificator.php

| | `-- Welcome.php

| |-- etc

| | `-- Config.php

| |-- fb

| | |-- channel.html

| | `-- index.php

| |-- gplus

| | `-- index.php

| |-- library

| | |-- PHPMailer

| | |-- facebook-php-sdk

| | |-- google-api-php-client

| | |-- securimage

| | `-- xmlseclibs

| |-- mail

| | `-- index.php

| |-- pages

| | |-- gen.php

| | `-- index.php

| `-- shib

| `-- index.php

The directory tree has been organized to be as simple as possible. So we have a �class�
folder for PHP classes, an �etc� folder with the constants �le. Then the four folders �fb�,
�gplus�, �mail� and �shib� explained in the �Redirection Page� the �pages� folder where we
can �nd the index and the page used to generate the certi�cate. The last one is used to keep
all the library.

13

3.3 Authentications

This section is dedicated to the explanation of the four authentications system more in
details. We will include some portions of code to better explain how the system works.

3.3.1 Facebook We will begin by explaining the link �Register with Facebook� in the
index page. This is generated with the Facebook SDK call �getLoginUrl� so we don't have
to worry about the additional parameters needed.

Here is the code if the �facebookLogin� method in the �Welcome.php� class:

public function facebookLogin() {

$config = array();

$config['appId'] = Config::FACEBOOK_APP_ID;

$config['secret'] = Config::FACEBOOK_SECRET;

$facebook = new Facebook($config);

$loginUrl = $facebook->getLoginUrl(array('scope' => 'email', 'redirect_uri' =>

Config::FACEBOOK_REDIRECT_URL));

$values = explode("?", $loginUrl);

$fields = explode("&", $values[1]);

echo "<form action='https://www.facebook.com/dialog/oauth' method='post'>";

foreach ($fields as $value) {

$expVal = explode("=", $value);

echo "<input type='hidden' name='$expVal[0]' value='" . urldecode($expVal[1])

. "' />";

}

echo "<input type='hidden' name='method' value='post' />";

echo "<input type='submit' value='Register with Facebook' />";

echo "</form>";

}

The �rst lines are used to initialize the SDK where we pass the application id and secret
in order to create a �Facebook� object. The �scope� parameters in �getLoginUrl� is used to
tell Facebook that we want to have access to the email and �redirect_uri� is the URI to
where redirect the user after he is authenticated. The result is this link:

https://www.facebook.com/dialog/oauth?client_id=543670079021930

&redirect_uri=https%3A%2F%2Flocalhost%2Ffb%2F

&state=9587ac1d3d50d15f861fc6f6515f2f45

&sdk=php-sdk-3.2.2

&scope=email

The �client_id� parameter is the ID of our application registered with Facebook and
�state� is used to protect against CSFR attacks. This parameter will be passed to Facebook
and if we will obtain after the redirection, we will be able to say if the request comes from the
origin and not from a possible attack. When the user clicks it will be redirect to the Facebook
log-in page and after the authentication he will be redirected to �https://localhost/fb/�. Note
that we build a form in order to avoid to expose the CSRF token, this is a practice that is
suggested by OWASP. The code relative to this page is the following:

...

try {

if($facebook->getAccessToken()){

14

$verificator = new Verificator();

$user = $facebook->api('/me');

$email = $user['email'];

$userid = $user['id'];

$userDB = base64_encode($userid . "." . $email);

$hashInfo = hash('sha256', $userDB);

$proofVer = $verificator->verifiyFacebook($hashInfo, $userDB, $user['id'],

$email);

}

} catch (Exception $e) {

echo $e;

error_log($e);

exit;

}

...

With �getAccessToken� the SDK check if after the authentication a valid access token
exists. The access token state that the user has authenticated himself and if this token is
invalid or doesn't exist the SDK will complain exiting immediately. This call also check if
the CSRF token �state� match with the previous one. After this step we get the user pro�le
with �$facebook->api('/me')� and we extract the user ID and email because we will use
them to generate our proof. The �$userDB� variable holds the result of the concatenated
and base64 encoded email and user ID. We will pass this variable to the �hash� function
in order encrypt this evidence because we don't want that the DTS will see what's inside.
We use a SHA-256 hash. We then create a �Veri�cator� object used to verify the proofs and
call �veri�yFacebook� with the hash, the base64 encoded clear text and the id of the user
as parameters. This function basically performs these steps:

� Send the hash to the DTS in order to obtain a signed version of our hashInfo
� Verify the hash received by the DTS
� Insert into the database the proof signed by the DTS

This function will return true if the veri�cation doesn't encounter any problems. You
can �nd the implementation in the �Veri�cator Class� section at the end. In this case we
can show the form for generating the certi�cate:

...

<tr><td><?php if($proofVer) $verificator->showCaptchaForm () ?></td></tr>

...

3.3.2 Google+ The authentication system of Google+ works quite in the same way as
Facebook.

We begin with the log-in url, generated by the �gplusLogin� method of the �Welcome.php�
class:

public function gplusLogin() {

$client = new Google_Client();

$client->setClientId(Config::GOOGLE_CLIENT_ID);

$client->setClientSecret(Config::GOOGLE_CLIENT_SECRET);

$client->setRedirectUri(Config::GOOGLE_REDIRECT_URL);

$client->setDeveloperKey('http://localhost');

15

$client->setScopes(array('https://www.googleapis.com/auth/userinfo.email',

'https://www.googleapis.com/auth/userinfo.profile'));

$plus = new Google_PlusService($client);

$state = md5(rand());

$_SESSION['gplus_state'] = $state;

$url = $client->createAuthUrl()."&state=".$state;

$values = explode("?", $url);

$fields = explode("&", $values[1]);

echo "<form action='https://accounts.google.com/o/oauth2/auth' method='post'>";

foreach ($fields as $value) {

$expVal = explode("=", $value);

echo "<input type='hidden' name='$expVal[0]' value='" . urldecode($expVal[1]) .

"' />";

}

echo "<input type='hidden' name='method' value='post' />";

echo "<input type='submit' value='Register with Google+' /></form>";

}

This code does quite the same thing as the one for Facebook. We initialize the Google
SDK with the application ID, the secret and the redirect URI. We set the scopes so that
we can access the user pro�le and the email. We generate also a �state� so that we can use
it later to identify a possible CSRF. In the case of Facebook this is done automatically but
with the SDK of Google we have to do it by hand. Then we call �createAuthUrl� to obtain
the desired URL.

The generated link is the following:

https://accounts.google.com/o/oauth2/auth?response_type=code

&redirect_uri=https%3A%2F%2Flocalhost%2Fgplus%2F

&client_id=142948380952.apps.googleusercontent.com

&scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fuserinfo.email+

https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fuserinfo.profile

&access_type=offline

&approval_prompt=force

&state=45f6d500228f6349c9fd35c828bcb205

The parameters are quite the same as Facebook and they don't need additional expla-
nation.

When the redirection to our application has completed the following code is executed:

...

if (isset($_GET['code']) && $_GET['state'] == $_SESSION['gplus_state']) {

try {

$client->authenticate($_GET['code']);

$verificator = new Verificator();

$token = json_decode($client->getAccessToken());

$request = new

Google_HttpRequest("https://www.googleapis.com/oauth2/v1/userinfo?

alt=json&access_token=$token->access_token");

$resp = $client->getIo()->authenticatedRequest($request);

$userInfoJson = json_decode($resp->getResponseBody());

$userid = $userInfoJson->{'id'};

$email = $userInfoJson->{'email'};

16

$gplusValue = base64_encode($userid . "." . $email);

$hashInfo = hash('sha256', $gplusValue);

$proofVer = $verificator->verifyGooglePlus($hashInfo, $gplusValue,

$userInfoJson->id);

} catch (Exception $e) {

echo $e;

error_log($e);

}

} else {

echo "CSRF token state doesn't match.";

error_log("CSRF token state doesn't match.");

}

...

We �rst check if we received the �code� parameter used to get the access token and we
also check if the state parameter we stored correspond to the one sent by Google. Then
with �authenticate� we check if we can obtain the token by using the code received. We
make a Google_HttpRequest to retrieve the user pro�le so we extract the info we need from
the JSON we obtain. After we verify the proof and we show the form for generating the
certi�cate as done before with Facebook.

3.3.3 Shibboleth With Shibboleth we have �rst to con�gure a service provider (Sp)
that will lately communicate with the IdP where the identity of the user resides. In the real
case the IdP will be the SWITCHaai system but we will use an IdP made available by the
testshib.org project. For the con�guration we followed the steps provided on the testshib.org
website.

In particular after con�guring and installing the Sp we have to con�gure Apache so that
we can have a resource that we can access only after the authentication with the IdP. In our
case we add this to the Apache con�guration:

<Location /shib/>

AuthType shibboleth

ShibRequestSetting exportAssertion true

ShibRequestSetting requireSession 1

require valid-user

</Location>

We will serve the resource https://localhost/shib/ only after an authentication with
the IdP. Note the �exportAssertion true� option: this is used to export the SAML assertion
exchanged between the IdP and the Sp so that we can use it as a proof (the con�guration �le
of the Sp must be also changed: add the attribute �exportLocation="https://localhost/
Shibboleth.sso/GetAssertion"� to the �Session� tag in shibboleth2.xml[8]).

When the user will click on the link it will be redirected to the page of the IdP, more
precisely at this URL:

https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO?SAMLRequest=

fZFLb8IwEIT%2FSuQ7efEIsghSCociQYkI7aGXynEWYsmxU6%2FTln9fQ6hKVYmb5Z

351jOeIWtkS7PO1moH7x2g9b4aqZBeBinpjKKaoUCqWANILadFtlnT2A9pa7TVXEvi

ZYhgrNBqoRV2DZgCzIfg8Lxbp6S2tkUaBFJzJmuNNihqUZZagq19RB2cgXGQb4s98Z

buBUKxM%2BvXKarWt26AzudrczxfBG77QUi4undQCQPcsYst8VbLlLwdKj6GSVlCEh

4YSzhnbFhGE5bEU3cYjpwMsYOVQsuUTUkcRqNBGA3C6T5K6Dim49Er8fJryAehKqGO

17

https://localhost/Shibboleth.sso/GetAssertion
https://localhost/Shibboleth.sso/GetAssertion

9xspexHSx%2F0%2BH%2FSJXsDgJY0TkPns3Cu9LDY3Td%2FHsp96yfx%2FmZtTkc%2

BCG2y%2Fo6VPjrNa5loKfvIyKfXnwgCzkJKIBPPe8vfr598%3D

&RelayState=ss%3Amem%3A42a3662cb37594966885ec83aacdb5f9ad944f6e812

a8764df7f3d15c3207c7f

After the authentication the page on �https://localhost/shib/�:

...

if (isset($_SERVER['Shib-Assertion-01']) && isset($_SESSION['shib_state']) &&

$_SESSION['shib_state'] == $_GET['state']) {

try {

$shibAssertion = $_SERVER['Shib-Assertion-01'];

$verificator = new Verificator();

$proofVer = $verificator->verifyShibboleth($shibAssertion, $_SERVER['eppn']);

} catch (Exception $e) {

echo $e;

error_log($e);

}

} else {

echo "Something wrong happened while accessing this page.";

error_log("Something wrong happened while accessing this page.");

}

...

This code �rst check if the URL of the SAML assertion exists (session variable $_SERVER['Shib-
Assertion-01'] and then check the CSRF token. Then we pass the URL of the assertion to
the �verifyShibboleth� function to check the correctness of the assertion with the xmlseclibs.
The �$_SERVER['eppn'] contains the user name the authenticated user.

3.3.4 Mail This kind of authentication works a bit di�erent if compared to the other. In
this case we say a user is authenticate with his email if he can submit to the application a
code sent to him. If he can read the email he has access to a mail server with a user name
and a password.

Instead of a link we have a form where the user can submit the email:

18

Fig. 5. �The form of the email authentication method.�

The CAPTCHA is used to avoid an automation when submitting the form for example
by a script that run remotely.

After the submission the following code checks the email and generates the code:

if (isset($_POST['captcha_code']) && isset($_POST['email'])) {

$secureImage = new Securimage();

$val = $secureImage->check($_POST['captcha_code']);

$regex =

'/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$/';

$email = strtolower($_POST['email']);

if (isset($_POST['sendEmail']))

if ($val && preg_match($regex, $email)) {

$bin = file_get_contents('/dev/urandom', false, null, 0, 75);

$random_string = bin2hex($bin);

$link = "https://localhost/mail/?c=" . $random_string;

$mailer = new PHPMailer();

$mailer->IsSMTP();

$mailer->Port = 587;

$mailer->AddAddress($email, $email);

$mailer->Host = "mail.server.com";

$mailer->From = "register@bfh.ch";

$mailer->Subject = "Registration";

$mailer->SMTPAuth = true;

$mailer->SMTPDebug = 0;

$mailer->Username = "register@bfh.ch";

$mailer->Password = "---------";

$mailer->Body = "Click on the link in order to register yourself: $link";

if (!$mailer->Send()) {

return $mailer->ErrorInfo;

} else {

19

$db = new DB();

$db->query("INSERT INTO mailAuthRequests (email,code) VALUES

(:email,:code)", array('email' => $email, 'code' => $random_string));

return 1;

}

} else {

return -1;

}

}

The �rst lines are used to check the various parameters like the CAPTCHA (with the
secureImage library) or the email with a regexp. After these steps we create the random
code we would like to the via email to the user. We use ��le_get_contents� to get random
data (maximal length 75) from the device �/dev/urandom�. This device generates random
data and can be useful for these purposes. After that we con�gure the PHPMailer in order
to be able to send the email. If the email has been sent successfully we store the request
into the database.

The user will receive a link like this:

https://localhost/mail/?c=a9f8970570a751cbc15ab46aa67e7b6bc614de84

f2918f670437b5b25af6f033a7f78c0f6ac6a651cdea9134cdb39bcf55adde8699

cd04b9882c398131c1d7ce38d82bc63627687cb0f68f

When he will click the page on �https://localhost/mail� will perform the following:

$code = $_GET['c'];

$conn = new PDO('mysql:host=localhost;dbname=project1', 'user', 'pass');

$stmt = $conn->prepare("SELECT email,code,requestTime,verified FROM mailAuthRequests

WHERE code = :code");

$stmt->execute(array('code' => $code));

...

if ($stmt->rowCount() == 1) {

$result = $stmt->fetch(PDO::FETCH_ASSOC);

date_default_timezone_set("Europe/Zurich");

$storedTime = new DateTime($result['requestTime']);

$actualTime = new DateTime(date("Y-m-d H:i:s"));

$difference = $storedTime->diff($actualTime);

$expired = false;

if ($difference->format("%i") > 30 || $result['verified']) {

$expired = true;

} else {

$verificator = new Verificator();

$hashEmail = hash('sha256', $result['email']);

$proofVer = $verificator->verifyEmail($hashEmail, $result['email'], $code);

$update = $conn->prepare("UPDATE mailAuthRequests tSET verified = TRUE WHERE

code = :code");

$update->execute(array('code' => $code));

}

}

...

20

This code selects the code from the requests table and if it exists it checks if is it still
valid. The duration of each code is 30 minutes. If the code is valid we will generate the proof
thanks to the �verifyEmail� function. At the end we update the table of the mail requests.

3.4 Certi�cates Generation

The step of generating a certi�cate is one of the goal of this project. An X.509 must be
generated when the user has successfully authenticated to an IdP: this certi�cate will be
later used to identify him inside the UniVote system. We have two use cases for generating
a certi�cate:

� RSA key pair: one set of certi�cates must be generated including an RSA key as
public key. The relative private key must be kept on the user's computer. This kind of
certi�cates are used by election administrator in UniVote.

� ElGamal key pair: the other set of certi�cates must include an ElGamal key. Generally
is not possible to include an ElGamal key into a X.509, but due to the similarity with
DSA this is possible. The key type in the certi�cate will always be DSA but we include
an ElGamal key. These certi�cates are used for identifying users in UniVote.

The certi�cate will be client side, this means that our application must only sign the
public key that comes from the user. This means that the user has the responsibility to keep
the secret key. During the explanation of the certi�cate generation we will see how these
problematics have been solved.

3.4.1 RSA Certi�cates To generate these kind of certi�cates we have used a technology
called SPKAC (introduced in the technology section). In particular when the user lands to
the redirection page of the chosen IdP he see will a form, this form contains a �keygen� tag:

<keygen name='pubkey' challenge='randomchars'>

This tag as explained by w3schools.com �speci�es a key-pair generator �eld used for
forms. When the form is submitted, the private key is stored locally, and the public key is
sent to the server.�[9] So with this method we have the advantage that we don't need to
manage any cryptographical operation inside our web browser. The private key is stored
inside the browser while the public key is sent to the server.

When the tag is rendered, the user can chose from a drop down menu the length of the
key. If we don't use the �type� attribute an RSA key will be generated. The browser will
then generate a SPKAC that our server will sign inside the certi�cate.

This is an example of what can be sent to the server[4]:

commonname=John+Doe&email=doe@foo.com&org=Foobar+Computing+Corp.&

orgunit=Bureau+of+Bureaucracy&locality=Anytown&state=California&country=US&

key=MIHFMHEwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAnX0TILJrOMUue%2BPtwBRE6XfV%0AWt

KQbsshxk5ZhcUwcwyvcnIq9b82QhJdoACdD34rqfCAIND46fXKQUnb0mvKzQID%0AAQABFhFNb3

ppbGxhSXNNeUZyaWVuZDANBgkqhkiG9w0BAQQFAANBAAKv2Eex2n%2FS%0Ar%2F7iJNroWlSzSM

tTiQTEB%2BADWHGj9u1xrUrOilq%2Fo2cuQxIfZcNZkYAkWP4DubqW%0Ai0%2F%2FrgBvmco%3D

The private part is stored inside the cryptographical wallet of the browser that has
generated the request. We can export the private key for example using PKCS12 so that we
can protect it with a password.

21

In order to generate a valid certi�cate we can collect the other data needed from Face-
book, Google+, Shibboleth or the e-mail. So we will be able to have all the �elds like the
common name, the e-mail or the organizational unit.

The PHP page �gen.php� will generate the certi�cate. Here we show the code we use[6]:

...

$CAmail = $_SESSION['email'];

$CAorg = "RISIS";

$CAcountry = "CH";

$CAcity = "Bern";

$CAlocality = "Biel";

$key = $_REQUEST['pubkey'];

str_replace(str_split(" \t\n\r\0\x0B"), '', $key);

$keyreq = "SPKAC=" . str_replace(str_split(" \t\n\r\0\x0B"), '', $key);

$keyreq .= "\nemailAddress=" . $CAmail;

$keyreq .= "\n0.OU=" . $CAorg . " client certificate";

$keyreq .= "\norganizationName=" . $CAorg;

$keyreq .= "\ncountryName=" . $CAcountry;

$keyreq .= "\nstateOrProvinceName=" . $CAcity;

$keyreq .= "\nlocalityName=" . $CAlocality;

$opensslconf = "/etc/ssl/openssl.cnf";

$days = '180';

$certfolder = "/tmp/";

$capw = "pass";

file_put_contents($certfolder . $username . ".spkac", $keyreq);

$command = "export HOME=\"/etc/ssl/myCA\" && /usr/bin/openssl ca -config " .

$opensslconf . " -days " . $days . " -notext -batch -spkac " . $certfolder .

$username . ".spkac -out " . $certfolder . $username . " -passin pass:'" .

$capw . "' 2>&1";

error_log(shell_exec($command));

....

We now explain the code. With SPKAC we can pass to OpenSSL a request that is stored
inside a text �le. The format of this �le is simple: the �rst line must be the SPKAC key
received followed by a �\n� and by all the other �led needed, always followed by a �\n�.
After creating this �le (�le_put_contents), we invoke the openssl command to generate
a certi�cate using this �le. We specify as attributes the con�guration of OpenSSL with �-
con�g�, the days of validity with �-days�, �-batch� means to not prompt anything, the location
of the SPKAC �le with �-spkac�, the location of the generated X.509 certi�cate with �-out�
and at the end the password of the certi�cation authority used to create the certi�cate with
�-passin�. Not that at the beginning we have �export HOME=�/etc/ssl/myCA�'' because if
we omit this export OpenSSL won't be able to �nd some �le needed during the generation
process.

After creating the certi�cate on the server, we need to send it back to the client:

...

22

$certName = $serial . ".pem";

$length = filesize($certfolder . $username);

header('Last-Modified: ' . date('r+b'));

header('Accept-Ranges: bytes');

header('Content-Length: ' . $length);

header('Content-Type: application/x-x509-user-cert');

readfile($certfolder . $username);

exit;

So we take the name of the freshly created certi�cate we compute the size with ��lesize�
and we send the headers to the client browser to specify the date we are about to send.
Finally with �read�le� we send the certi�cate�.

If everything works �ne the user should see this message inside the browser after clicking
submit:

Fig. 6. �The successful created and stored certi�cate.�

23

Fig. 7. �The freshly created certi�cate.�

3.4.2 ElGamal Certi�cates The generation of these certi�cate is a little bit particular
because we have to include an ElGamal key inside an X.509 certi�cate. This use case is at
today not de�ned but due to the similarity with DSA, we can put the ElGamal key at the
place of a DSA one. Note that the key in the certi�cate will be always identi�ed by a DSA
key.

We need a library like �Bouncy Castle� for Java that works with PHP. With this library
we can create a certi�cate using the ASN1 notation, so we can insert each element of
a X.509 certi�cate in an independent manner. The idea is to insert an ElGamal key in
the �subjectPublicKey� �eld by leaving the algorithm of the �SubjectPublicKeyInfo� to
�dsaEncryption�. The ASN1 structure of a X.509 certi�cate can be found at http://www.
ietf.org/rfc/rfc3280.txt, point 4.1.

For PHP we found two library that can be useful to do this kind of operation:

� phpseclibs: a security library for PHP that can be used to generate X.509 certi�cates
(http://phpseclib.sourceforge.net/).

� PHPASN1: a library that can be used to create arbitrary ASN1 structures (https:
//github.com/FGrosse/PHPASN1).

24

http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://phpseclib.sourceforge.net/
https://github.com/FGrosse/PHPASN1
https://github.com/FGrosse/PHPASN1

Unfortunately we were not able to generate this kind of certi�cates. With the �rst library
the problem is that the DSA algorithm is not supported. At today only RSA is supported
but as this page says (http://phpseclib.sourceforge.net/ideas.htm) a possible DSA
implementation is possible. With the second library, we were able to generate an ASN1
structure that can be compared to the one of a X.509 certi�cate. This structure can be found
in the �pages� directory under the �phpasn1.php� name. The problem with the PHPASN1
library is that it does not support big numbers. So we were not able to put inside some
�elds big numbers like the ElGamal parameters.

4 Results

The application has been developed and it is functional. A user can authenticate using one
of the four IdP proposed and after this step he can generate a digital certi�cate using only
RSA. The proofs are also generated and stored so that we can later verify them. Here we
would like to illustrate with some images the �nal result:

Fig. 8. �The index page of the registration application.�

This is the main page with the four authentication mechanisms. The user will see this
when typing the address in the browser.

25

http://phpseclib.sourceforge.net/ideas.htm

The redirection page after being successfully authenticated with Facebook.

Fig. 9. �The redirection page for Facebook.�

In this page the user should choose the maximal length of the key and then con�rm the
form submission with a CAPTCHA. The server will then generate a X.509 certi�cate with
an RSA key. This certi�cate will be installed in the browser.

5 Future Work

For possibles future improvements we can say that the ElGamal certi�cate generation part
must be improved. If the two libraries listed in the section �ElGamal Certi�cates� will be
further developed by including the necessary changes they can be included in the application
to provide the functionality. If this functionality will be included we have also to introduce a
control in the di�erent redirection pages in order to show the RSA or the ElGamal certi�cate
generation.

6 Conclusion

After the development of this project we learned interesting things about how can we use
other already available services to authenticate users. This can have advantages like the fact
that we don't have to keep our local database with emails and passwords. A user can also
see this as an advantage so he doesn't have to register every time with new credentials. We
have also see how big enterprises use authentication protocols such as OAuth to provide the
authentication for third party applications.

Almost every goal has been reached. The only goal that has not been completely reached
is the certi�cate generation. In fact we are only able to generate digital certi�cates that make
use of RSA as key algorithms. For ElGamal certi�cates we were not able to �nd a suitable
library like �Bouncy Castle� for Java that we can use to build an X.509 certi�cate with an
ElGamal key instead of a DSA key.

26

We also stated how security is important. Even if we developed a functional application
there can always be threats that can change the behavior of a software so these aspects must
be evaluated and taken in account since the beginning of a project.

This integration between security and the various technologies employed has also con-
tributed to increase our personal technical baggage, making this project useful and inter-
esting at the same time.

References

1. UniVote System Speci�cation, http://e-voting.bfh.ch/projects/univote/
2. SAML, http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
3. SPKAC, http://en.wikipedia.org/wiki/SPKAC
4. The �keygen� tag, https://developer.mozilla.org/en-US/docs/Web/HTML/Element/keygen
5. RFC 3280 Public Key Infrastructure, http://www.ietf.org/rfc/rfc3280.txt
6. PHP code for SPKAC certi�cate generation,https://www.mail-archive.com/whatwg@lists.
whatwg.org/msg10411.html

7. OWASP, https://www.owasp.org/index.php/Main_Page
8. Shibboleth Wiki, https://wiki.shibboleth.net/confluence/display/SHIB2/

NativeSPAssertionExport

9. w3schools.com, http://www.w3schools.com/tags/tag_keygen.asp

7 Annexes

Here we will list the most important pages and classes used for this project.

7.1 Welcome Class

<?php

/**

* This class is used to show the different login options of the home

* page. It's also used to check the e-mail submission

*

* @author snake

*/

class Welcome {

/**

* Display the Facebook login URL

*/

public function facebookLogin() {

require_once("../library/facebook-php-sdk/src/facebook.php");

$config = array();

$config['appId'] = Config::FACEBOOK_APP_ID;

$config['secret'] = Config::FACEBOOK_SECRET;

$facebook = new Facebook($config);

27

http://e-voting.bfh.ch/projects/univote/
http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://en.wikipedia.org/wiki/SPKAC
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/keygen
http://www.ietf.org/rfc/rfc3280.txt
https://www.mail-archive.com/whatwg@lists.whatwg.org/msg10411.html
https://www.mail-archive.com/whatwg@lists.whatwg.org/msg10411.html
https://www.owasp.org/index.php/Main_Page
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAssertionExport
https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAssertionExport
http://www.w3schools.com/tags/tag_keygen.asp

$loginUrl = $facebook->getLoginUrl(

array('scope' => 'email', 'redirect_uri' =>

Config::FACEBOOK_REDIRECT_URL));

//split the values of the url in order to construct a form

$values = explode("?", $loginUrl);

$fields = explode("&", $values[1]);

echo "<form action='https://www.facebook.com/dialog/oauth'

method='post'>";

foreach ($fields as $value) {

$expVal = explode("=", $value);

echo "<input type='hidden' name='$expVal[0]' value='" .

urldecode($expVal[1]) . "' />";

}

echo "<input type='hidden' name='method' value='post' />";

echo "<input type='submit' value='Register with Facebook' />";

echo "</form>";

}

/**

* Display the Google+ login URL

*/

public function gplusLogin() {

require_once

'../library/google-api-php-client/src/Google_Client.php';

require_once

'../library/google-api-php-client/src/contrib/Google_PlusService.php';

$client = new Google_Client();

$client->setClientId(Config::GOOGLE_CLIENT_ID);

$client->setClientSecret(Config::GOOGLE_CLIENT_SECRET);

$client->setRedirectUri(Config::GOOGLE_REDIRECT_URL);

$client->setDeveloperKey('http://localhost');

$client->setScopes(array('https://www.googleapis.com/auth/userinfo.email',

'https://www.googleapis.com/auth/userinfo.profile'));

$plus = new Google_PlusService($client);

//create the state token used for CSRF

$state = md5(rand());

$_SESSION['gplus_state'] = $state;

$url = $client->createAuthUrl() . "&state=" . $state;

//split the values of the url in order to construct a form

$values = explode("?", $url);

$fields = explode("&", $values[1]);

echo "<form action='https://accounts.google.com/o/oauth2/auth'

method='post'>";

foreach ($fields as $value) {

$expVal = explode("=", $value);

if ($expVal[0] == 'redirect_uri') {

28

echo "<input type='hidden' name='$expVal[0]'

value='https://localhost/gplus/' />";

} else {

echo "<input type='hidden' name='$expVal[0]' value='" .

urldecode($expVal[1]) . "' />";

}

}

echo "<input type='hidden' name='method' value='post' />";

echo "<input type='submit' value='Register with Google+' /></form>";

}

/**

* Display the e-mail submission form

*/

public function emailLogin() {

echo "<form name='email-auth' method='POST''>

<table>

<tr><td>Register with e-mail</td><td><input type='text'

name='email' /></td></tr>

<tr><td colspan='2'><img id='captcha'

src='../library/securimage/securimage_show.php'

alt='CAPTCHA Image' /></td></tr>

<tr><td colspan='2'><a href='#'

onclick=\"document.getElementById('captcha').src =

'../library/securimage/securimage_show.php?' +

Math.random();

return false\">[Different Image]</td></tr>

<tr><td>Captcha</td><td><input type='text' name='captcha_code'

size='10' maxlength='15' /></td></tr>

<tr><td colspan='2'><input type='submit' value='Send e-mail'

name='sendEmail' /></td></tr>

</table>

</form>";

}

/**

* Display the Shibboleth login URL

*/

public function shibbolethLogin() {

//create the state token used for CSRF

$state = md5(rand());

$_SESSION['shib_state'] = $state;

echo "<form action='" . Config::SHIB_SECURE_URL . "?state=$state'

method='post'>";

echo "<input type='submit' value='Register with Shibboleth' />";

echo "</form>";

}

/**

* Check the submission of the email

* @return int return 1 if is all good, -1 if there are problems for example

29

* with the e-mail format and a message if there are problems when sendind

the e-mail.

*/

public function checkEmailSubmission() {

require_once "../library/securimage/securimage.php";

if (isset($_POST['captcha_code']) && isset($_POST['email'])) {

$secureImage = new Securimage();

$val = $secureImage->check($_POST['captcha_code']);

$regex =

'/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$/';

$email = strtolower($_POST['email']);

if (isset($_POST['sendEmail']))

if ($val && preg_match($regex, $email)) {

require_once 'DB.php';

//generate random code

$bin = file_get_contents('/dev/urandom', false,

null, 0, 75);

$random_string = bin2hex($bin);

$link = Config::MAIL_REDIR_URL . "?c=" .

$random_string;

require_once

'../library/PHPMailer/class.phpmailer.php';

$mailer = new PHPMailer();

$mailer->IsSMTP();

$mailer->Port = 587;

$mailer->AddAddress($email, $email);

$mailer->Host = "mail.anehosting.com";

$mailer->From = "facebook@osgate.org";

$mailer->Subject = "Authentication Test";

$mailer->SMTPAuth = true;

$mailer->SMTPDebug = 0;

$mailer->Username = "facebook@osgate.org";

$mailer->Password = "facebook.2013";

$mailer->Body = "Click on the link in order to

be able to vote: $link";

if (!$mailer->Send()) {

return $mailer->ErrorInfo;

} else {

//store the signed request into the db

$db = new DB();

$db->query("INSERT INTO mailAuthRequests

(email,code) VALUES

30

(:email,:code)", array('email' =>

$email, 'code' => $random_string));

return 1;

}

} else {

return -1;

}

}

}

}

7.2 Veri�cator Class

<?php

require_once 'DB.php';

/**

* This class is used to verify the evidence of the various IDP and to

* show the form used to generate the certificatae

*

* @author snake

*/

class Verificator {

/**

* Associative array with the result of the DTS

*/

private $dtsResult;

/**

* The public key of the DTS

*/

private $dtsPubKey;

/**

* The database object

*/

private $db;

/**

* Control variable used to check if a user has already a certificate

*/

private $hasCert;

public function __construct() {

$this->db = new DB();

}

/**

* Display the form with the captcha and eventually the certificate fields

*/

public function showCaptchaForm() {

echo "

31

<form name='confirm' method='post' action='../pages/gen.php'>

<table>";

if (!$this->hasCert) {

echo "

<tr><td>This fields is used to generate a

certificate</td>

<td><keygen name='pubkey'

challenge='randomchars'></td></tr>";

}

echo "

<tr><td>Captcha</td><td><img id='captcha'

src='../library/securimage/securimage_show.php'

alt='CAPTCHA Image' /></td></tr>

<tr><td></td><td><input type='text' name='captcha_code'

size='10' maxlength='15' /><a href='#'

onclick=\"document.getElementById('captcha').src =

'../library/securimage/securimage_show.php?' +

Math.random();

return false\">[Different Image]</td></tr>

<tr><td></td><td><input type='submit' name='check'

value='Submit' /></td></tr>

</table>

</form>";

}

/**

* Verify an evidence generated by the DTS

* @param string $data the cleartext data

* @param string $signature the signautre generated by the DTS

* @return type

*/

private function verify($data, $signature) {

if ($this->dtsPubKey == null) {

$fp = fopen("/etc/httpd/dts.pem", "r");

$cert = fread($fp, 8192);

fclose($fp);

$this->dtsPubKey = openssl_get_publickey($cert);

}

$res = openssl_verify($data, $signature, $cert);

return $res;

}

/**

* Get the evidence from the DTS

* @param string $hashedValue the value from where we want the signature

* @return the signed value

*/

32

private function getDTSValue($hashedValue) {

$curl = curl_init('https://dts?h=' . $hashedValue . '');

curl_setopt($curl, CURLOPT_FAILONERROR, true);

curl_setopt($curl, CURLOPT_FOLLOWLOCATION, true);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, false);

curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, false);

$res = curl_exec($curl);

$val = explode(".", curl_exec($curl));

$this->dtsResult = array();

$this->dtsResult['signature'] = base64_decode($val[0]);

$this->dtsResult['timestamp'] = $val[1];

return $res;

}

/**

* Verify the Facebook evidence

* @param string $hashedValue the value to be signed from the DTS

* @param string $evidence the clear text evidence

* @param string $userID the id of the user

* @return int

* @throws Exception if there are problems validating the signature

*/

public function verifiyFacebook($hashedValue, $evidence, $email) {

$dtsStringResult = $this->getDTSValue($hashedValue);

$concatHash = $hashedValue . $this->dtsResult['timestamp'];

$ok = $this->verify($concatHash, $this->dtsResult['signature']);

if ($ok == 1) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

$this->db->query("SELECT UID FROM fbAuthentications WHERE UID

= :id", array('id' => $email));

//only update the evidence

if ($this->db->getRowCount() == 1) {

$this->db->query("UPDATE fbAuthentications SET

proofValue=:proof, fbValue=:fbValue WHERE UID =

:id", array('proof' => $dtsStringResult, 'fbValue'

=> $evidence, 'id' => $email));

} else { //insert a new user

$this->db->query("INSERT INTO fbAuthentications

(UID,proofValue,fbValue) VALUES

(:id,:proof,:fbValue)", array('id' => $email,

'proof' => $dtsStringResult, 'fbValue' =>

$evidence));

$this->hasCert = false;

}

33

$_SESSION['authSource'] = "fb";

$_SESSION['email'] = $email;

} elseif ($ok == 0) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Bad signature verification");

} else {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Error checking the signature from the

DTS");

}

return $ok;

}

/**

* Verify the Google+ evidence

* @param string $hashedValue the value to be signed from the DTS

* @param string $evidence the clear text evidence

* @param string $userID the id of the user

* @return int

* @throws Exception if there are problems validating the signature

*/

public function verifyGooglePlus($hashedValue, $evidence, $email) {

$dtsStringResult = $this->getDTSValue($hashedValue);

$concatHash = $hashedValue . $this->dtsResult['timestamp'];

$ok = $this->verify($concatHash, $this->dtsResult['signature']);

if ($ok == 1) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

$this->db->query("SELECT UID FROM gplusAuthentications WHERE

UID = :id", array('id' => $email));

//only update the evidence

if ($this->db->getRowCount() == 1) {

$this->db->query("UPDATE gplusAuthentications SET

proofValue=:proof, gplusValue=:fbValue WHERE UID =

:id", array('proof' => $dtsStringResult, 'fbValue'

=> $evidence, 'id' => $email));

} else { //insert a new user

$this->db->query("INSERT INTO gplusAuthentications

(UID,proofValue,gplusValue) VALUES

(:id,:proof,:gplus)", array('id' => $email,

34

'proof' => $dtsStringResult, 'gplus' =>

$evidence));

$this->hasCert = false;

}

$_SESSION['authSource'] = "gplus";

$_SESSION['email'] = $email;

} elseif ($ok == 0) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Bad signature verification");

} else {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Error checking the signature from the

DTS");

}

return $ok;

}

/**

* Verify the E-Mail evidence

* @param string $hashedValue the value to be signed from the DTS

* @param string $evidence the clear text evidence

* @param string $authCode the authorization code

* @return int

* @throws Exception if there are problems validating the signature

*/

public function verifyEmail($hashedValue, $evidence, $authCode) {

$dtsStringResult = $this->getDTSValue($hashedValue);

$concatHash = $hashedValue . $this->dtsResult['timestamp'];

$ok = $this->verify($concatHash, $this->dtsResult['signature']);

if ($ok == 1) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

$this->db->query("SELECT UID FROM mailAuthentications WHERE

UID = :mail", array('mail' => $evidence));

//only update the evidence

if ($this->db->getRowCount() == 1) {

$this->db->query("UPDATE mailAuthentications SET

proofValue=:proof WHERE UID = :mail",

array('proof' => $dtsStringResult, 'mail' =>

$evidence));

} else { //insert a new user

//store the evidence into the db

35

$this->db->query("INSERT INTO mailAuthentications

(proofValue,UID) VALUES (:proof,:email)",

array('proof' => $dtsStringResult, 'email' =>

$evidence));

$this->db->query("UPDATE mailAuthRequests SET

verified=TRUE WHERE code=:code", array('code' =>

$authCode));

$this->hasCert = false;

}

$_SESSION['authSource'] = "email";

$_SESSION['email'] = $evidence;

} elseif ($ok == 0) {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Bad signature verification");

} else {

// free the key from memory

openssl_free_key($this->dtsPubKey);

throw new Exception("Error checking the signature from the

DTS");

}

return $ok;

}

/**

* Verify the Shibboleth evidence

* @param string $hashedValue the value to be signed from the DTS

* @param string $evidence the clear text evidence

* @param string $userID the id of the user

* @return int

* @throws Exception if there are problems validationg the signature

*/

public function verifyShibboleth($shibAssertion, $userID) {

//retrieve the SAML assertion from URL

$curl = curl_init();

curl_setopt($curl, CURLOPT_URL, $shibAssertion);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

curl_setopt($curl, CURLOPT_FAILONERROR, true);

curl_setopt($curl, CURLOPT_FOLLOWLOCATION, true);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

curl_setopt($curl, CURLOPT_SSL_VERIFYHOST, false);

curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, false);

$result = curl_exec($curl);

$doc = new DOMDocument();

$doc->loadXML($result);

$objXMLSecDSig = new XMLSecurityDSig();

36

$objDSig = $objXMLSecDSig->locateSignature($doc);

if (!$objDSig) {

error_log("Cannot locate signature Node");

throw new Exception("Cannot locate Signature Node");

}

$objXMLSecDSig->canonicalizeSignedInfo();

//name of the attribute that corresponds to the id of the reference

$objXMLSecDSig->idKeys = array('ID');

$retVal = $objXMLSecDSig->validateReference();

if (!$retVal) {

error_log("Reference Validation Failed");

throw new Exception("Reference Validation Failed");

}

$objKey = $objXMLSecDSig->locateKey();

if (!$objKey) {

error_log("Reference Validation Failed");

throw new Exception("We have no idea about the key");

}

$objKeyInfo = XMLSecEnc::staticLocateKeyInfo($objKey, $objDSig);

if ($objXMLSecDSig->verify($objKey)) {

$ok = 1;

error_log("Signature validated");

} else {

error_log("Signature validation failed");

throw new Exception("Signature validation failed");

}

if ($ok == 1) {

$proofVal = base64_encode($result);

$this->db->query("SELECT UID FROM shibAuthentications WHERE

UID = :id", array('id' => $userID));

//only update the evidence

if ($this->db->getRowCount() == 1) {

$this->db->query("UPDATE shibAuthentications SET

proofValue=:proof WHERE UID = :id", array('id' =>

$userID, 'proof' => $proofVal));

} else { //insert a new user

//store the evidence into the db

$this->db->query("INSERT INTO shibAuthentications

(UID,proofValue) VALUES (:id,:proof)", array('id'

=> $userID, 'proof' => $proofVal));

$this->hasCert = false;

}

37

$_SESSION['authSource'] = "shib";

$_SESSION['email'] = $userID;

}

return $ok;

}

}

7.3 Index Page

<?php

require_once '../library/google-api-php-client/src/Google_Client.php';

require_once '../library/google-api-php-client/src/contrib/Google_PlusService.php';

require_once '../etc/Config.php';

require_once '../class/Welcome.php';

session_start();

$loginPortal = new Welcome();

?>

<html>

<head>

<meta charset="UTF-8">

<title>Registration Portal</title>

</head>

<body style="font-family: 'Open Sans Light';">

<h1 style="width: 100%; text-align: center;">Registration Portal</h1>

<table align="center" style="padding: 0px;">

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Facebook</h3></td></tr>

<tr><td style="padding: 12px; text-align: center;"><?php

$loginPortal->facebookLogin() ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Google+</h3></td></tr>

<tr><td style="padding: 12px; text-align: center;"><?php

$loginPortal->gplusLogin() ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>E-Mail</h3></td></tr>

<?php

echo "<tr><td>";

$res = $loginPortal->checkEmailSubmission();

if ($res == 1) {

echo "An e-mail has been sent to " .

mysql_real_escape_string($_POST['email']);

} else if ($res == -1) {

echo "The email isn' valid.";

38

} else {

echo $res;

}

echo "</td></tr>";

?>

<tr><td style="padding: 12px; text-align: center;"><?php

$loginPortal->emailLogin() ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Shibboleth</h3></td></tr>

<tr><td style="padding: 12px; text-align: center;"><?php

$loginPortal->shibbolethLogin() ?></td></tr>

</table>

</body>

</html>

7.4 Facebook Redirection Page

<?php

session_start();

require_once '../library/facebook-php-sdk/src/facebook.php';

require_once '../class/Verificator.php';

require_once '../etc/Config.php';

$config = array();

$config['appId'] = Config::FACEBOOK_APP_ID;

$config['secret'] = Config::FACEBOOK_SECRET;

$facebook = new Facebook($config);

?>

<html>

<head>

<meta charset="UTF-8">

<title>Facebook Authentication</title>

</head>

<body style="font-family: 'Open Sans Light';">

<?php

try {

//check CSFR token and access token

if($facebook->getAccessToken()){

$verificator = new Verificator();

// Proceed knowing you have a logged in user who's

authenticated.

$user = $facebook->api('/me');

//encode and serialize the user email and user ID as

evidence

$email = $user['email'];

$userid = $user['id'];

$userDB = base64_encode($userid . "." . $email);

39

$hashInfo = hash('sha256', $userDB);

$proofVer = $verificator->verifiyFacebook($hashInfo,

$userDB, $email);

}

} catch (Exception $e) {

echo $e;

error_log($e);

exit;

}

?>

<h1 style="width: 100%; text-align: center;">Facebook

Authentication</h1>

<table align="center" style="padding: 0px;">

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof</h3></td></tr>

<tr><td style="padding: 12px;"><?php echo $userid . "," .

$email ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof Verified</h3></td></tr>

<tr><td style="padding: 12px;"><?php if ($proofVer) echo

"Verified";

else echo "Not Verified"; ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Get Client Certificate</h3></td></tr>

<tr><td style="padding: 12px;"><?php if ($proofVer)

$verificator->showCaptchaForm() ?></td></tr>

</table>

</body>

</html>

7.5 Google+ Redirection Page

<?php

require_once '../library/google-api-php-client/src/Google_Client.php';

require_once '../library/google-api-php-client/src/contrib/Google_PlusService.php';

session_start();

require_once '../class/Verificator.php';

require_once '../etc/Config.php';

//initialize the Google SDK

$client = new Google_Client();

$client->setApplicationName('Project1');

$client->setClientId(Config::GOOGLE_CLIENT_ID);

$client->setClientSecret(Config::GOOGLE_CLIENT_SECRET);

$client->setRedirectUri(Config::GOOGLE_REDIRECT_URL);

$client->setDeveloperKey('http://localhost');

40

$client->setScopes(array('https://www.googleapis.com/auth/userinfo.email',

'https://www.googleapis.com/auth/userinfo.profile'));

$plus = new Google_PlusService($client);

?>

<html>

<head>

<meta charset = "UTF-8">

<title>Google+ Authentication</title>

</head>

<body style="font-family: 'Open Sans Light';">

<?php

//after a succesful authentication with google we are redirected here

with a "code" and "state" parameter

if (isset($_GET['code']) && $_GET['state'] ==

$_SESSION['gplus_state']) {

try {

$client->authenticate($_GET['code']);

$verificator = new Verificator();

$token = json_decode($client->getAccessToken());

$request = new

Google_HttpRequest("https://www.googleapis.com/oauth2/v1/userinfo?alt=json&access_token=$token->access_token");

$resp =

$client->getIo()->authenticatedRequest($request);

$userInfoJson = json_decode($resp->getResponseBody());

$userid = $userInfoJson->{'id'};

$email = $userInfoJson->{'email'};

$gplusValue = base64_encode($userid . "." . $email);

//get signature from DTS

$hashInfo = hash('sha256', $gplusValue);

$proofVer = $verificator->verifyGooglePlus($hashInfo,

$gplusValue, $userInfoJson->email);

} catch (Exception $e) {

echo $e;

error_log($e);

}

} else {

echo "CSRF token state doesn't match.";

error_log("CSRF token state doesn't match.");

}

?>

<h1 style="width: 100%; text-align: center;">Google+

Authentication</h1>

<table align="center" style="padding: 0px;">

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof</h3></td></tr>

<tr><td style="padding: 12px;"><?php echo $email . "," .

$userid ?></td></tr>

41

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof Verified</h3></td></tr>

<tr><td style="padding: 12px;"><?php

if ($proofVer)

echo "Verified";

else

echo "Not Verified";

?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Get Client Certificate</h3></td></tr>

<tr><td style="padding: 12px;"><?php if ($proofVer)

$verificator->showCaptchaForm() ?></td></tr>

</table>

</body>

</html>

7.6 Shibboleth Redirection Page

<?php

require_once '../library/xmlseclibs/xmlseclibs.php';

require_once '../etc/Config.php';

require_once '../class/Verificator.php';

session_start();

?>

<html>

<head>

<meta charset="UTF-8">

<title>Shibboleth Authentication</title>

</head>

<body style="font-family: 'Open Sans Light';">

<?php

if (isset($_SERVER['Shib-Assertion-01']) &&

isset($_SESSION['shib_state']) && $_SESSION['shib_state'] ==

$_GET['state']) {

try {

//retrieve the assertion UR

$shibAssertion = $_SERVER['Shib-Assertion-01'];

$verificator = new Verificator();

$proofVer =

$verificator->verifyShibboleth($shibAssertion,

$_SERVER['eppn']);

} catch (Exception $e) {

echo $e;

error_log($e);

}

} else {

echo "CSRF token state doesn't match.";

error_log("CSRF token state doesn't match.");

}

?>

42

<h1 style="width: 100%; text-align: center;">Shibboleth

Authentication</h1>

<table align="center" style="padding: 0px;">

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof</h3></td></tr>

<tr><td style="padding: 12px;"><?php echo "SAML Assertion

(".$_SERVER['Shib-Assertion-01'].")"; ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof Verified</h3></td></tr>

<tr><td style="padding: 12px;"><?php if($proofVer) echo

"Verified"; else echo "Not Verified"; ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Get Client Certificate</h3></td></tr>

<tr><td style="padding: 12px;"><?php if($proofVer)

$verificator->showCaptchaForm () ?></td></tr>

</table>

</body>

</html>

7.7 Mail Redirection Page

<?php

session_start();

require_once '../class/Verificator.php';

require_once '../class/DB.php';

$db = new DB();

$code = $_GET['c'];

$conn = new PDO('mysql:host=localhost;dbname=project1', 'root', 'adminroot');

//check if the code exists in the database

$stmt = $conn->prepare("SELECT email,code,requestTime,verified FROM mailAuthRequests

WHERE code = :code");

$stmt->execute(array('code' => $code));

?>

<html>

<head>

<meta charset="UTF-8">

<title>Mail Authentication</title>

</head>

<body style="font-family: 'Open Sans Light';">

<?php

if ($stmt->rowCount() == 1) {

//now check the time

$result = $stmt->fetch(PDO::FETCH_ASSOC);

date_default_timezone_set("Europe/Zurich");

$storedTime = new DateTime($result['requestTime']);

$actualTime = new DateTime(date("Y-m-d H:i:s"));

$difference = $storedTime->diff($actualTime);

$expired = false;

43

//is the code is older than 30 minutes or has already been

verified is "expired"

if ($difference->format("%i") > 30 || $result['verified']) {

$expired = true;

} else {

$verificator = new Verificator();

//get evidence from the DTS

$hashEmail = hash('sha256', $result['email']);

$proofVer = $verificator->verifyEmail($hashEmail,

$result['email'], $code);

$update = $conn->prepare("UPDATE mailAuthRequests SET

verified = TRUE WHERE code = :code");

$update->execute(array('code' => $code));

}

}

?>

<h1 style="width: 100%; text-align: center;">Mail Authentication</h1>

<table align="center" style="padding: 0px;">

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Validity</h3></td></tr>

<tr><td style="padding: 12px;"><?php if($expired) echo "This

authentication token has expired (validity 30 minutes).";

else echo "Token valid."; ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof</h3></td></tr>

<tr><td style="padding: 12px;"><?php echo $result['email'];

?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Proof Verified</h3></td></tr>

<tr><td style="padding: 12px;"><?php if($proofVer) echo

"Verified"; else echo "Not Verified"; ?></td></tr>

<tr><td style="background-color: #e5ecf9; text-align:

center;"><h3>Get Client Certificate</h3></td></tr>

<tr><td style="padding: 12px;"><?php if($proofVer)

$verificator->showCaptchaForm () ?></td></tr>

</table>

</body>

</html>

7.8 Certi�cate Generation Page

<?php

session_start();

require_once "../library/securimage/securimage.php";

require_once '../class/DB.php';

$secureImage = new Securimage();

$db = new DB();

44

//First check the captcha

if (isset($_POST['captcha_code'])) {

$val = $secureImage->check($_POST['captcha_code']);

if (!$val) {

echo "The security code entered was incorrect.

";

echo "Please try again.";

exit;

}

}

//check if variable needed to the generation of the certificate have been set

if (isset($_REQUEST['pubkey']) && isset($_SESSION['email']) &&

isset($_SESSION['authSource'])) {

$authSource = array();

$authSource['shib'] = "shibAuthentications";

$authSource['email'] = "mailAuthentications";

$authSource['fb'] = "fbAuthentications";

$authSource['gplus'] = "gplusAuthentications";

$table = $authSource[$_SESSION['authSource']];

//check if a user already has a certificate

$resource = $db->query("SELECT certPath FROM :table WHERE UID = :uid",

array('table' => $table, 'uid' => $_SESSION['email']));

$rowCount = $db->getRowCount();

if ($rowCount == 0) {

//the user doesn't have a certificate

$CAmail = $_SESSION['email'];

$CAorg = "RISIS";

$CAcountry = "CH";

$CAcity = "Bern";

$CAlocality = "Biel";

$key = $_REQUEST['pubkey'];

str_replace(str_split(" \t\n\r\0\x0B"), '', $key);

$keyreq = "SPKAC=" . str_replace(str_split(" \t\n\r\0\x0B"), '',

$key);

$keyreq .= "\nCN=" . $CAmail;

$keyreq .= "\nemailAddress=" . $CAmail;

$keyreq .= "\n0.OU=" . $CAorg . " client certificate";

$keyreq .= "\norganizationName=" . $CAorg;

$keyreq .= "\ncountryName=" . $CAcountry;

$keyreq .= "\nstateOrProvinceName=" . $CAcity;

$keyreq .= "\nlocalityName=" . $CAlocality;

$opensslconf = "/etc/ssl/openssl.cnf";

$days = '180';

45

$certfolder = "/tmp/";

$capw = "ciao";

//path of the user certificate

$serial = trim(file_get_contents("/etc/ssl/myCA/serial"));

file_put_contents($certfolder . $username . ".spkac", $keyreq);

$command = "export HOME=\"/etc/ssl/myCA\" && /usr/bin/openssl ca

-config " . $opensslconf . " -days " . $days . " -notext -batch

-spkac " . $certfolder . $username . ".spkac -out " . $certfolder

. $username . " -passin pass:'" . $capw . "' 2>&1";

error_log(shell_exec($command));

$certName = $serial . ".pem";

//apparently we cannot use a token to specify the table in UPDATEso

we concatenate the name directly in the query string

$db->query("UPDATE $table SET certPath = :cert WHERE UID = :uid",

array('cert' => $certName, 'uid' => $_SESSION['UID']));

//send back the certificate to the user

$length = filesize($certfolder . $username); // $cerfolder.$uniq =

/tmp/4k9Bal

header('Last-Modified: ' . date('r+b'));

header('Accept-Ranges: bytes');

header('Content-Length: ' . $length);

header('Content-Type: application/x-x509-user-cert');

readfile($certfolder . $username);

exit;

}

}

?>

7.9 DTS

<?php

//get the data we have to sign

if (isset($_GET['h'])) {

$fp = fopen("/etc/httpd/privkeydts.pem", "r");

$priv_key = fread($fp, 8192);

fclose($fp);

$pkeyid = openssl_get_privatekey($priv_key);

$timestamp = time();

$data = $_GET['h'] . $timestamp;

//sign the data with our private key

openssl_sign($data, $signature, $pkeyid);

46

openssl_free_key($pkeyid);

//send back the signature along with a timestamp

echo base64_encode($signature) . "." . $timestamp;

}

?>

47

	Developing a registration application for UniVote with multiple identity provider access
	Introduction
	E-Voting
	UniVote
	Actual situation
	Goal
	Use other IdPs
	Cryptographical Proof
	Digital certificates

	Structure of the Report

	Web Security Aspects
	SQL Injections
	Cross-Site Request Forgery

	Technical Implementation
	Technologies
	OAuth
	SAML
	PHP
	SPKAC
	OpenSSL
	Digital Time-stamping Service
	Google Developers Console and Facebook Developer
	RSA, ElGamal and DSA

	Application Overview
	Index Page
	Redirection Page
	Generation Page
	Directory Tree

	Authentications
	Facebook
	Google+
	Shibboleth
	Mail

	Certificates Generation
	RSA Certificates
	ElGamal Certificates

	Results
	Future Work
	Conclusion
	Annexes
	Welcome Class
	Verificator Class
	Index Page
	Facebook Redirection Page
	Google+ Redirection Page
	Shibboleth Redirection Page
	Mail Redirection Page
	Certificate Generation Page
	DTS

