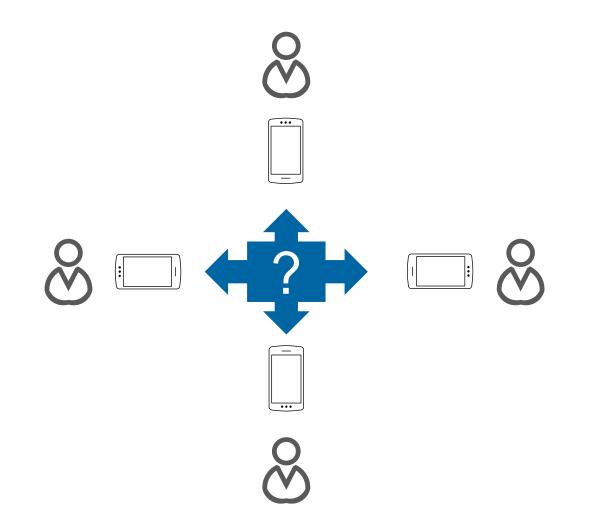
# SAFE SLINGER

Easy-to-Use and Secure Public-Key Exchange

Gian Poltéra Student, Master of Science in Engineering Biel, 17. Dezember 2013

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

FHO Fachhochschule Ostschweiz


# Agenda

# Introduction

- Basics
- SafeSlinger Protocol
- Security
- Alternatives
- Conclusion



# Introduction





# Problem

- Unknown sender
- Problem with authentic public key exchange

# SafeSlinger

- Physical Interaction to establish digital trust
- Secure exchange of public keys (groups)
- Secure data exchange
- Provides an API for importing applications public keys into a user's contact information
- First complete system without external trusted parties
- Secure exchange protocol
- SafeSlinger Video



# Introduction

## Goals

- Scalable
- Easy to use
- Portability
- Authenticity
- Secrecy



# Introduction

## Attacks

- Man-in-the-Middle (MitM) attack
- Impersonation attack
- Sybil attack
- Group-in-the-Middle (GitM) attack
- Malicious Server
- Information leakage after protocol abort
- Collision attack on low-entropy hash



# Applied Cryptographic Protocols

- AES (256 bit)
- RSA (2048 bit)
- SHA3 (256 bit)
- DH-Key Exchange (512 bit) ??
- Multi-Value-Commitment
- Group DH-Key Agreement
- PGP Word-List



# Agenda

## Introduction

#### Basics

SafeSlinger Protocol

# Security

- Alternatives
- Conclusion



# Cryptographic Commitment

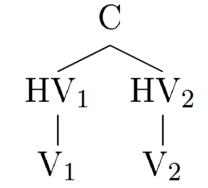
A Commitment is used to lock an entity to a Value V without disclosing V:

$$\boldsymbol{C}=\boldsymbol{H}(\boldsymbol{V},\boldsymbol{R})$$

- On the commitment *C*, the decommitment can be validated
- Ensures that the correct value V is disclosed
- $\blacksquare$  *R*, *V* cannot be inferred from *C*

# Unpredictable Value

If V is unpredictable, the additional R is not needed:


C = H(V)

# Multi-Value Commitment

In case we want to commit more Values with a single commitment:

 $\boldsymbol{C} = \boldsymbol{H}(\boldsymbol{H}\boldsymbol{V}_1 \parallel \boldsymbol{H}\boldsymbol{V}_2)$ 

• Decommitment of either  $V_1$  and  $V_2$  without disclosing the other



# Group DH Key Agreement

## Diffie-Hellman DH key Agreement

Secure Exchange of keys over a unsecure channel

#### Group DH Key Agreement

- Multiple parties participate to a common group key
- Examples are the Cliques, TGDH and STR protocols

#### STR K<sub>6</sub> Tree-based group DH protocol Similar to TGDH M $K_5$ Maximally unbalanced tree $K_4$ Ms $(\mathrm{K}=\mathrm{g}^{z\cdot g^{xy}},\mathrm{g}^{g^{z}\cdot g^{y}})$ Κ M<sub>4</sub> $K_3$ M3 $K_2$ $(g^{xy}, g^{g^{xy}})$ $(z,g^z)$ M<sub>3</sub> K<sub>2</sub> $K_1 = M_1$ M<sub>2</sub> Mo $(\mathbf{x},\mathbf{g}^x)$ $M_1$ $(\mathbf{v},\mathbf{g}^{y})$

Κ

 $M_7$ 

FHO Fachhochschule Ostschweiz

# Agenda

#### Introduction

Basics

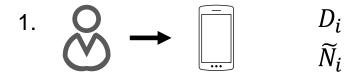
# SafeSlinger Protocol

- Security
- Alternatives
- Conclusion



# SafeSlinger Protocol

- Multi-Commitment Generation
- Authenticity Verification Round
- Secret Sharing Round


```
Multi-Commitment Generation
 Data Selection & Counting
1. U_i \xrightarrow{UI} M_i
U_i \xrightarrow{UI} M_i
                         : D_i (the data to be exchanged)
                        : \tilde{N}_i (number of people in the group)
 Commitment, Group DH Key Setup
                        : Nm_i \leftarrow \{0,1\}^{\ell} ("match" nonce)
 2. M<sub>i</sub>
                           Hm_i = H(Nm_i), Hm'_i = H(Hm_i)
                          Nw_i \leftarrow \mathbb{R} \{0,1\}^{\ell}, Hw_i = H(Nw_i)  ("wrong" nonce)
                           HN_i = H(Hm'_i || Hw_i) (multi-value commitment)
                          n_i \leftarrow \mathbb{R} \{0,1\}^{\ell'}, G_i = g^{n_i} \mod p \text{ (group DH key)}
                          E_i = \{D_i\}_{Nm_i} (encryption of data)
C_i = H(HN_i || G_i || E_i) (commitment)
 3. M_i \rightarrow S
                           C_i
 Authenticity Verification Round
 Server Unique ID Assignment, User Grouping
 4. S \rightarrow M_i
                         : ID<sub>i</sub> (unique ID per user)
5. U_i

6. U_i \xrightarrow{UI} M_i

7. M_i \rightarrow S
                         : find lowest unique ID among users \rightarrow ID_L
                         : ID<sub>L</sub> (enter lowest ID)
                         IDL
 Collection and Distribution of Initial Decommitment
 8. S \rightarrow M_i
                         : ID_j, C_j (j \neq i)
                         (other users' ID and commitment)
9. M_i \rightarrow S
S \rightarrow M_i
                         HN_i, G_i, E_i 
HN_j, G_j, E_j (j \neq i)
                         (other users' decommitments)
 10. M_i : C_j \stackrel{?}{=} H(HN_j ||G_j||E_j) \ (j \neq i) (verify)
Word Phrase Comparison of Integrity of Commitments
                          : WordPhrase ([H(HN_*, G_*, E_*)]_{24}) (screen)
 11. M<sub>i</sub>
    U_i \xrightarrow{UI} M_i
                         : Select Matching 3-Word Phrase
 12. M_i \rightarrow S
                          : if "no match" or wrong phrase selected:
                           Send Hm', Nwi, Abort protocol.
 13. M_i \rightarrow S
                          : else if "match" & correct phrase selected:
                           Send Hmi, Hwi
 14. S \rightarrow M_i
                         : Hm_i, Hw_i (j \neq i)
                         : HN_j \stackrel{?}{=} H(H(Hm_j)||Hw_j) \ (j \neq i) \ (verify)
 15. M<sub>i</sub>
                           Abort if any verification failed
 Secret Sharing Round
 Group DH Key Establishment
 16. M<sub>i</sub>
                          Computation of group DH tree
                           K = Private key of root node (see Section 3.2)
 Distribution and Verification of Data Decryption Key
                         \{Nm_i\}_K
 17. M_i \rightarrow S
     S \rightarrow M_i
                           \{Nm_j\}_K (j \neq i)
 18. M<sub>i</sub>
                         : Decryption of Nm_i (j \neq i)
                           Hm_{i} \stackrel{!}{=} H(Nm_{i}) \ (j \neq i) \ (verify)
 Decryption of Data and Contact Import
 19. Mi
                         : Decryption of \hat{E}_i with Nm_i (j \neq i) \rightarrow D_j
20. U_i \xrightarrow{UI} M_i
                         : Save user data D_i (j \neq i)
```



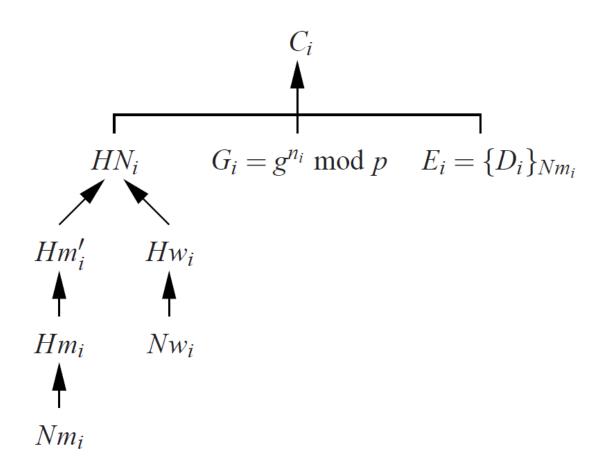

**Data Selection & Counting** 



(the data to be exchanged) (number of people in the group)



# **Multi-Commitment Generation**






Commitment, Group DH Key Setup  $Nm_i \stackrel{R}{\longleftarrow} \{0,1\}^{\ell}$  $Hm_i = H(Nm_i),$ ("match" nonce) 2.  $Hm'_i = H(Hm_i)$  $Nw_i \leftarrow R {0,1}^{\ell},$ ("wrong" nonce)  $Hw_i = H(Nw_i)$ (multi-value  $HN_i = H(Hm'_i \parallel Hw_i)$ commitment)  $n_i \leftarrow \{0,1\}^{\ell'}, G_i = g^{n_i} \mod p$ (group DH key)  $E_i = \{D_i\}_{Nm_i}$ (encryption of data)  $C_i = H(HN_i \parallel G_i \parallel E_i)$ (commitment)



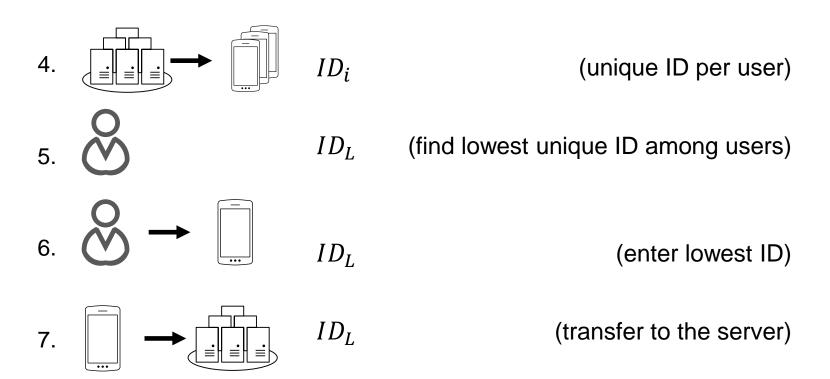
# **Multi-Commitment Generation**





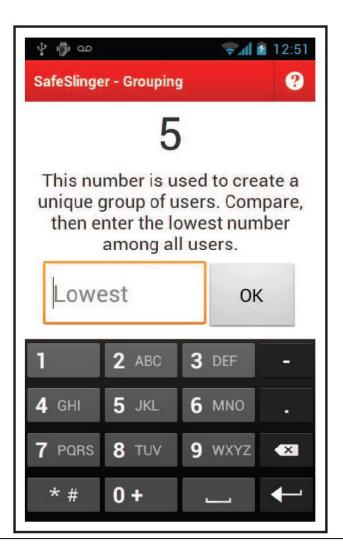
FHO Fachhochschule Ostschweiz

# **Multi-Commitment Generation**


 $C_i$ 



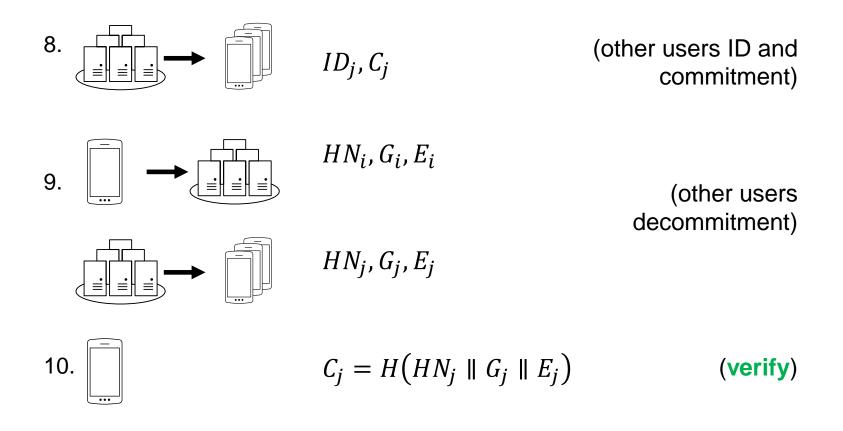
(send the commitment to the server)




# Server Unique ID Assignment, User Grouping

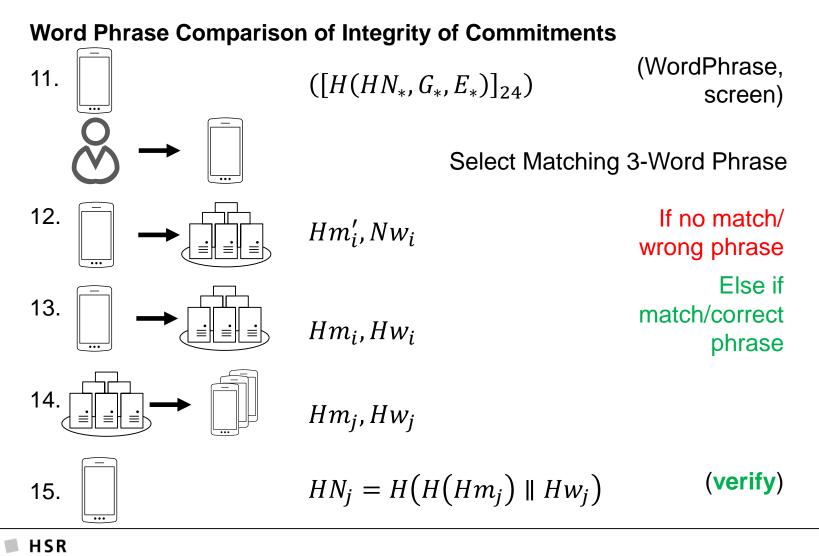





# Authenticity Verification Round






FHO Fachhochschule Ostschweiz

## **Collection and Distribution of Initial Decommitment**



FHO Fachhochschule Ostschweiz

20 Gian Poltéra, SafeSlinger, Biel, 17.12.2013

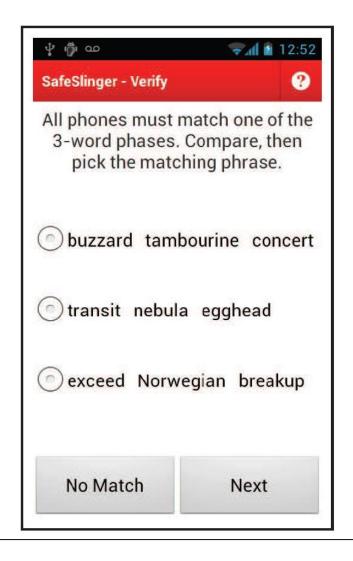


HOCHSCHULE FÜR TECHNIK

RAPPERSWIL

# Authenticity Verification Round

# PGP Word List


Even and odd list with 256 words

# Word Phrase Verification

- Hash-Value from step 11
- Truncated the first 24 bits
- Standard PGP approach to convert into 3 words
- First 8 bits select from even list
- Second 8 bits select from odd list
- Final 8 bits select from even list

# Word Phrase Collision Avoidance

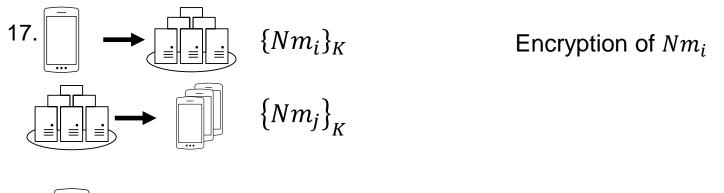
- No correct word is in the decoy phrases
- Each decoy word is unique across all decoy phrases in the group



CHULE FÜR TECHNIK

HSR

RAPPERSWII


#### **Group DH Key Establishment**

16.

Computation of group DH tree

## **Distribution and Verification of Data Decryption Key**

K



18.

Decryption of  $Nm_j$  $Hm_j = H(Nm_j)$ 

(verify)



# Secret Sharing Round

# **Decryption of Data and Contact Import**





# Secret Sharing Round

| 11:20             |
|-------------------|
| ?                 |
| Select<br>to your |
| S.                |
| all.              |
|                   |
| •                 |
|                   |
|                   |

FHO Fachhochschule Ostschweiz

# Agenda

## Introduction

#### Basics

# SafeSlinger Protocol

# Security

- Alternatives
- Conclusion



Malicious outsiders (not legitimate group members)

- Adversary joins arbitrary group
  - Too many commitments
- Local adversary jams communication of one of the local devices, and attempt to join the group in place of the jammed user
  - Hash comparison with all other users
- Malicious server splits the group up into different subsets of users
  - Hash comparison with all other users
- Participate as a user and inject a commitment
  - Number of members is larger than the user has entered



## Malicious legitimate participant of the group

- Sybil attack, adversary attempts to infiltrate additional virtual members into the group
  - Number of virtual members is larger than the user has entered

# Group-in-the-Middle attack

- Hash comparison, different groups = different hashes
- Impersonation attack, adversary send malicious contact information for himself
  - Users verify which of their contact entries they actually import into their address book



# Information leakage

■ No Information is revealed unless all members reveal their "match" nonce

# Collision attack on low-entropy hash

Multi-commitment, not changeable

## Man-in-the-Middle attack

Only least one matching word, without confirming its position

• 
$$P[A \cap B \neq \emptyset] = 1 - \frac{\binom{254}{2} \cdot \binom{255}{1}}{\binom{256}{2} \cdot \binom{256}{1}} \cong 1.94\%$$

Only the first word

• 
$$P[A_1 = B_1] = \frac{1}{256} \cong 0.391\%$$

All words, with confirmation of their position

• 
$$P[A = B] = \frac{1}{256 \cdot 256 \cdot 256} = 2^{-24} \cong 0.00000596\%$$

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

FHO Fachhochschule Ostschweiz

# Agenda

## Introduction

#### Basics

## SafeSlinger Protocol

# Security

#### Alternatives

#### Conclusion



# Bump

- The users are grouped by "bumping" their phones
- Bump reveals the user location to the server
- Malicious bystander can simultaneously simulate the bump
- Not scalable to multiple users
- No remote users support
- Device position unreliable
- Often delay of 10 seconds or more
- Often fails to pair

# Ambient noise

- Privacy-sensitive sound to the server
- Unreliable in many circumstances

# Agenda

- Introduction
- Basics
- SafeSlinger Protocol
- Security
- Alternatives
- Conclusion

- New approach
- Simple operability
- Current cryptographic protocols
- Weakness 24 bit word phrase and 512 bit large DH-key



- AMIR, Yair, et al. On the performance of group key agreement protocols. ACM Transactions on Information and System Security (TISSEC), 2004.
- DAMGÅRD, Ivan. Commitment schemes and zero-knowledge protocols. In: Lectures on Data Security. Springer Berlin Heidelberg, 1999.
- DIFFIE, Whitfield; HELLMAN, Martin. New directions in cryptography. *Information Theory, IEEE Transactions on*, 1976.
- FARB, Michael, et al. SafeSlinger: Easy-to-Use and Secure Public-Key Exchange. Technical Report of the CyLab, Carnegie Mellon University, 2012.
- KIM, Yongdae; PERRIG, Adrian; TSUDIK, Gene. Tree-based group key agreement. ACM Transactions on Information and System Security (TISSEC), 2004.
- STEER, David G., et al. A secure audio teleconference system. In: Proceedings on Advances in cryptology. Springer-Verlag New York, Inc., 1990.
- STEINER, Michael; TSUDIK, Gene; WAIDNER, Michael. Key agreement in dynamic peer groups. Parallel and Distributed Systems, IEEE Transactions on, 2000.