Boardroom Voting with Ballot Design Flexibility

Oksana Kulyk

Oksana Kulyk | November 21, 2013

Boardroom Voting - Concept

Voters as the election authorities

Relatively small total number of voters

Lack of central trusted instance

Boardroom Voting - Setting

- No more than 25 voters
- Portable devices (Android phones)
- Remote participation allowed
- Spontaneous elections: easy setup phase
- Flexible ballots

Challenges

- Portable devices \rightarrow network restrictions
 - protocols dealing with brief network shortages
 - protocols dealing with some participants going offline
- Portable devices \rightarrow low computational power
 - most efficient protocols in general
 - most efficient protocols depending on ballot type
- No central trusted instance
 - non-trusted central instance for communications
 - protocols to ensure fault-tolerant communications

Boardroom Voting Stages

- PKI establishment (once for group of voters)
- Distributed key generation (once for group of voters)
- Ballot preparation (each election)
- Vote casting (each election)
- Vote anonymisation (each election)
- Verifiable distributed decryption (each election)

Preliminary Stages

PKI establishment

- Use existing corporate PKI, or
- Run public keys exchange protocol
- Distributed key generation (each voter):
 - Distributively generate private key shares
 - Compute joint public key

Ballot Preparation & Vote Casting

- Ballot preparation (initiator):
 - Broadcast ballot form and declared voting span
- Vote casting (each voter in turn):
 - Make a choice
 - Encrypt a chosen vote with joint public key
 - Broadcast the encrypted vote

Vote anonymization

- Shuffling
 - Shuffle and permutate ciphertext list
 - Generate zero-knowledge proof of shuffle correctness
 - Broadcast the shuffled list and the proof
- Verification
 - Verify the proof of current shuffle
 - If verified, broadcast acknowledgement message
 - As next shuffler, if at least threshold acknowledgements received, take the result of current shuffle as input
 - Otherwise, take the previous list of ciphertexts as input

Vote anonymization

→Sequence example:

Vote Anonymization Round for 3 voters

Verifiable distributed decryption

- Partially decrypt the ciphertexts using private key share
- Compute the zero-knowledge proofs of decryption correctness
- Broadcast partial decryptions and proofs
- Verify the proofs of other voters
- Reconstruct the votes from verified partial decryptions
- Display the results of voting

Boardroom Voting - Completed

- PKI establishment [Farb12]
- Distributed key generation [CGS97]
- Ballot preparation
- Vote casting
- Vote anonymisation
- Verifiable distributed decryption [CGS97]

Election Authority Application

- PKI establishment
- Distributed key generation
- Verifiable distributed decryption

IUD Election 2014	
About Election Authorities Cast Votes (Anonymized) Cast Votes	Election Result Admin La
Election Data	
Name	TUD 2014 Election
Security code of election lock	No lock created
Threshold	3
Total authorities	5
Description	Please participate
Head of the commission	
Current Stage	No election started

→Offshot: Election Authority Application

Election Authority Applicatio

Welcome to the Election Authority Application

Next

Boardroom Voting – Current Work

- PKI establishment [Farb12]
- Distributed key generation [CGS97]
- Ballot preparation
- Vote casting
- Vote anonymisation
- Verifiable distributed decryption [CGS97]

Boardroom Voting – Current Work

■ Ballot preparation → Different types of ballots

Vote casting

- Vote encoding according to ballot type
- Vote encryption with jointly generated public key
- Vote broadcasting to other voters
- Vote anonymisation
 - Mix net protocols
 - Homomorphic sum

Vote Anonymisation Methods

Homomorphic sum

- more efficient for simple ballots (-)
- less suitable for more complex ballots (+)
- Mix net schemes
 - more complex (-)
 - more flexibility with regards to ballot type (+)
 - \rightarrow Decided for mix net, due to demands for ballot flexibility

Mix Net Evaluation Criteria

- Efficiency
 - Important to consider because of smartphone limitations
 - No more than total of 15 minutes for shuffle
- Security
 - No link between shuffled vote and voter's identity
 - Detection of the vote's replacement during shuffle
 - If threshold of voters is honest, no attacks with high success probability

Mix Net Evaluation Criteria

- Shuffling and reencrypting the El Gamal ciphertexts
 → Integration with other parts of protocol
- Robustness for threshold of honest mix nodes
 - ➔ Dealing with some voters misbehaving/being unavailable
- Open access
 - ➔ Legally allowed to implement in our project
- Adjustability for decentralized protocol
 Control trusted instance not needed
 - Central trusted instance not needed

Next steps

- Chose a mix net according to criteria mentioned
 → f. ex. consider [SK95], [AH01], [TW10], [BG11] etc.
- Implement and integrate all missing stages
- Integrate different protocols for various stages

➔ dynamically select the best one for each specific election

Design usable interfaces

References

- [CGS97] Cramer, Ronald, Rosario Gennaro, and Berry Schoenmakers.
 "A secure and optimally efficient multi-authority election scheme." European transactions on Telecommunications 8.5 (1997): 481-490.
- [BG12] Bayer, Stephanie, and Jens Groth. "Efficient zero-knowledge argument for correctness of a shuffle." Advances in Cryptology– EUROCRYPT 2012. Springer Berlin Heidelberg, 2012. 263-280.
- [AH01] Abe, Masayuki, and Fumitaka Hoshino. "Remarks on mixnetwork based on permutation networks." Public Key Cryptography. Springer Berlin Heidelberg, 2001.
- [Farb12] Farb, Michael, et al. SafeSlinger: Easy-to-Use and Secure Public-Key Exchange. Vol. 3. Technical Report of the CyLab, Carnegie Mellon University, 2012.
- [SK95] Sako, Kazue, and Joe Kilian. "Receipt-free mix-type voting scheme." Advances in Cryptology—EUROCRYPT'95. Springer Berlin Heidelberg, 1995.

References

 [TW10] Terelius, Björn, and Douglas Wikström. "Proofs of restricted shuffles." Progress in Cryptology–AFRICACRYPT 2010. Springer Berlin Heidelberg, 2010. 100-113.

