Berner Fachhochschule - Technik und Informatik - RISIS

UniVote and More

A remote e-voting system for university elections in Switzerland

Eric Dubuis, Reto E. Koenig

June 15th, 2013

Who Are We?

- ► Berner Fachhochschule (Bern University of Applied Sciences)
- Department: Engineering and Information Technology
- Research Institute for Security in the Information Society (RISIS)
- E-Voting group
 - → 4 professors Eric Dubuis, Stephan Fischli, Rolf Haenni, Reto Koenig
 - → 1 PhD candidate
 - → 1 research assistant
 - → 2 master students
- Organizer of the Swiss E-Voting workshops, founder of the Swiss E-Voting Competence Center, several e-voting research projects, publications

Outline of the Talk

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Security Requirements for E-Voting Systems

- Correctness
 - → Democracy
 - eligible voters only (eligibility verifiability)
 - one voter, one vote that counts
 - → Integrity
 - after casting, votes cannot be altered, deleted, or substituted
 - → Accuracy
 - all valid votes are counted
 - invalid votes are not counted
- Privacy
 - → Secrecy: no one can tell how a voter voted
 - → Fairness: no one can infer partial results before the election is closed
 - → Anonymity: no one can tell who voted
 - → Receipt-freeness: no one can prove whether or how she voted

Security Requirements for E-Voting Systems

- Verifiability
 - → Individual verifiability
 - cast as intended
 - recorded as cast
 - counted as recorded
 - → Universal verifiability
 - anyone can verify the correctness of the election result

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

UniVote Page 8

UniVote Facts

Uni BE	BFH	Uni ZH
9.0% 100%		25833 100% 6 3138 12.1% 100% 6 45 0.2% 1.4%

More Facts

They have:

- elections for deputies, president, etc.
- parties, lists, candidates
 - → candidates can be cumulated
 - → candidates from other lists can be added
- period of term: one year (Uni ZH), two years (Uni Bern, BFH)

UniVote Page 10

More Facts



Additional Requirements

They require:

- SWITCHaai/Shibboleth (www.switch.ch)
- "vote and go"

Our goals as researchers:

- demonstrated the features of a verifiable e-voting system
- ▶ and a few more...

UniVote Page 12

Non-Goals

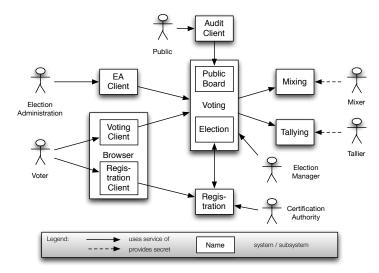
From the set of requirements listed earlier, we exclude:

- that the solution is coercion resistant, and
- that the solution the secure platform problem (I'll return to this point later...)

We do also not address the everlasting privacy problem.

UniVote Page 13

System Overview



Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

ElGamal Cryptosystem

Ingredients:

- ▶ Multiplicative cyclic group $(G_q, \cdot, 1)$ of order q.
- ▶ Typical choice: Subgroup of quadratic residues $G_q \subset \mathbb{Z}_p^*$ of prime order q, where p = 2q + 1 is a safe prime.
- Public parameters are thus p, q, and a generator g of $G_q = \langle g \rangle$

(x,y) is an ElGamal key pair, where $x \in_R \mathbb{Z}_q$ is private decryption key and $y = g^x \in G_q$ the corresponding public encryption key.

- ► Encryption of $m \in G_q$: $Enc_y(m, r) = (g^r, m \cdot y^r) \in G_q \times G_q$
- For a given $E = (a, b) = Enc_y(m, r)$, m can be recovered: $Dec_x(E) = a^{-x} \cdot b = m$

Homomorphic Property of ElGamal

The ElGamal encryption function is *homomorphic* with respect to multiplication:

$$ightharpoonup Enc_y(m_1, r_1) \cdot Enc_y(m_2, r_2) = Enc_y(m_1 \cdot m_2, r_1 + r_2)$$

Thus, a given encryption $E = Enc_y(m, r)$ can be re-encrypted by multiplying E with an encryption of the neutral element 1:

$$ReEnc_y(E, r') = E \cdot Enc_y(1, r') = Enc_y(m, r + r')$$

This is an re-encryption of m with a fresh randomization r + r'.

Plaintext Encoding and Decoding

Plaintext needs to be selected from \mathbb{Z}_q rather than G_q . With a safe prime p, we can use the following mapping $G: \mathbb{Z}_q \to G_q$ to encode any integer plaintext $m' \in \mathbb{Z}_q$ by a group element $m \in G_q$:

$$m=G(m')=egin{cases} m'+1, & ext{if } (m'+1)^q=1, \ p-(m'+1), & ext{otherwise}. \end{cases}$$

Given $m \in G_q$, we can reconstruct $m' \in \mathbb{Z}_q$ by applying the inverse function $G^{-1}: G_q \to \mathbb{Z}_q$ to m:

$$m'=G^{-1}(m)=egin{cases} m-1, & ext{if } m\leq q, \ (p-m)-1, & ext{otherwise}. \end{cases}$$

Schnorr Signatures (1)

Ingredients:

- ▶ Multiplicative cyclic group $(G_q, \cdot, 1)$ of order q.
- ▶ Typical choice: Schnorr group, a subgroup $G_q \subset \mathbb{Z}_p^*$ of prime order q, where p = kq + 1 is a large prime.
- Public parameters are thus p, q, and a generator g of $G_q = \langle g \rangle$
- ▶ Cryptographic hash function $H: \{0,1\}^* \to \mathbb{Z}_q$

Schnorr Signatures (2)

An Schnorr signature key pair is a tuple (sk, vk), where $sk \in_R \mathbb{Z}_q$ is the randomly chosen private signature key and $vk = g^{sk} \in G_q$ the corresponding public verification key.

Let $m \in \{0,1\}^*$ denote an arbitrary message to sign, and $r \in_R \mathbb{Z}_q$ a randomly selected value, then the Schnorr signature for m is:

$$Sign_{sk}(m,r) = (a, r - a \cdot sk) \in \mathbb{Z}_q \times \mathbb{Z}_q$$
, where $a = H(m||g^r)$

Given a public verification key vk and a signature $S = (a, b) = Sign_{sk}(m, r)$ for message m, it can be verified by computing:

$$Verify_{vk}(m, S) = \begin{cases} accept, & \text{if } a = H(m||g^b \cdot vk^a), \\ reject, & \text{otherwise} \end{cases}$$

Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof is a cryptographic protocol, where the prover P tries to convince the verifier V that a mathematical statement is true, but without revealing any information other than the truth of the statement.

A proof of knowledge is a particular proof allowing P to demonstrate knowledge of a secret information involved in the mathematical statement. Notion for non-interactive variant:

 $NIZKP\{(s_1, s_2, \dots, s_n) : \text{relations among parameters and } s_i\}$

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

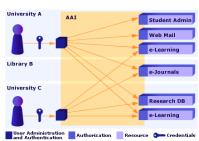
Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

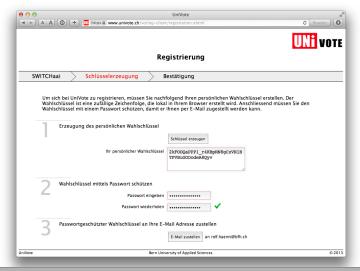
Current Status, Concluding Remarks

Voter Registration (1)



See: www.switch.ch/aai

Voter Registration (Voters Perspective)



Voter Registration (2)

The public parameters p, q = (p-1)/k, and g for Schnorr signatures are known in advance and do not to change over time.

Person V_i performs the following steps:

- 1. Choose $sk_i \in_R \mathbb{Z}_q$ uniformly at random.
- 2. Compute $vk_i = g^{sk_i} \mod p$.
- 3. Generate $\pi_{sk_i} = NIZKP\{(sk_i) : vk_i = g^{sk_i} \mod p\}$ to prove knowledge of sk_i .
- 4. Send $(V_i, cred_i, vk_i, \pi_{sk_i})$ to CA.

 vk_i is the public key for Schnorr signatures of voter V_i .

Voter Registration (3)

CA performs the following steps:

- 1. Check validity of $(V_i, cred_i)$.
- 2. Check correctness of π_{sk_i} .
- 3. Determine current timestamp t_i .
- 4. Compute $Z_i = Certify_{sk_{CA}}(V_i, vk_i, t_i) = (V_i, vk_i, t_i, CA, C_i)$.
- 5. Publish Z_i in public certificate directory (append-only).

Note that vk_i is the public (signature) key of voter V_i .

Registration Subsystem

The Registration subsystem publishes the public parameters p, q=(p-1)/k, and g for Schnorr signatures as well as the certificates of registered persons in an (append-only) manner:

Identifier V_i	Name,	Public key <i>vk</i> _i
314	Miller,	27983
722	Moore,	48094

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

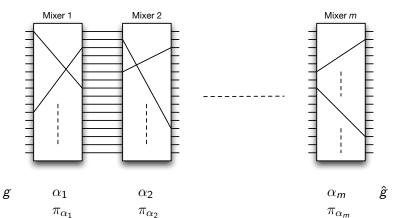
Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Election Generator Construction (1)



Election Generator Construction (2)

Let $g_0 = g$ the publicly known generator of the Schnorr signature scheme. Each $M_k \in M$ performs the following steps:

- 1. Choose $\alpha_k \in_R \mathbb{Z}_q$ at random.
- 2. Compute blinded generator $g_k = g_{k-1}^{\alpha_k} \mod p$.
- 3. Generate $\pi_{\alpha_k} = NIZKP\{(\alpha_k) : g_k = g_{k-1}^{\alpha_k} \mod p\}$ to prove knowledge of α_k .
- 4. Generate signature $S_{g_k} = Sign_{sk_k}(id||g_k||\pi_{\alpha_k})$.
- 5. Publish $(M_k, id, g_k, \pi_{\alpha_k}, S_{g_k})$ on EB.

Election manager EB checks all proofs and publishes:

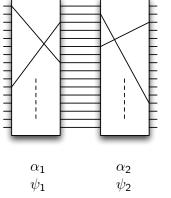
- 1. Let $\hat{g} = g_m$ be the election generator.
- 2. Publish \hat{g} on EB.

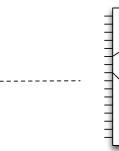
Electoral Roll Preparation

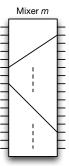
- ▶ The Election Authority defines the set of eligible voters $V = \{V_1, \dots, V_n\}$.
- For every voter V_i , select the most recent certificate $Z_i = (V_i, vk_i, t_i, CA, C_i)$ from the public certificate directory and verify it.

Recall that vk_i is the public key for Schnorr signatures of voter V_i .

Generating the Public Verification Keys (1)







$$g$$
 α_1 ψ_1 α_2 α_3 α_4 α_4 α_5 α_5

$$\psi_2$$

Mixer 2

$$\pi_{\psi_1}$$
 π_{α_1}

Mixer 1

$$\pi_{\psi_2}$$

$$\pi_{\alpha_1}$$
 π_{α_2}

$$lpha_{ extsf{m}} \ \psi_{ extsf{m}}$$

$$\stackrel{\circ}{g}$$
v k_y'

$$\pi_{\psi_{m}}$$

$$\pi_{\alpha_m}$$

Page 31

Generating the Public Verification Keys (2)

Let $VK_0 = \{vk_1, \dots, vk_n\}$ be the (ordered) set of public keys in electoral roll \mathcal{Z}_V . Repeat the following steps for each mixer $M_k \in M$:

- 1. Shuffle the public keys VK_{k-1} into VK_k :
 - 1.1 Compute blinded key $vk'_i = vk^{\alpha_k}_i$ for every $vk_i \in VK_{k-1}$.
 - 1.2 Choose a permutation $\psi_k : [1, n] \to [1, n]$ at random.
 - 1.3 Let $VK_k = \{vk'_{\psi_k(i)} : 1 \le i \le n\} = Shuffle_{\psi_k}(VK_{k-1}, \alpha_k)$ be the new (ordered) set of public keys shuffled according to ψ_k .
- 2. Generate $\pi_{\psi_k} = NIZKP\{(\psi_k, \alpha_k) : g_k = g_{k-1}^{\alpha_k} \wedge VK_k = Shuffle_{\psi_k}(VK_{k-1}, \alpha_k)\}$ using Wikstroem's proof of a shuffle.
- 3. Generate signature $S_{VK_k} = Sign_{sk_k}(id||VK_k||\pi_{\psi_k})$.
- 4. Publish $(M_k, id, VK_k, \pi_{\psi_k}, S_{VK_k})$ on EB.
- \Rightarrow Voter V_i can anonymously sign a ballot with his sk_i , election board EB can check.

Encryption Key Generation

Election manager *EM* defines ElGamal parameters P, Q = (P-1)/2, and G. May or may not change over time.

For each election, each Tallier $T_j \in T$ performs:

- 1. Choose $x_j \in_R \mathbb{Z}_Q$ uniformly at random.
- 2. Compute $y_j = G^{x_j} \mod P$.
- 3. Generate $\pi_{x_j} = NIZKP\{(x_j) : y_j = G^{x_j} \mod P\}$ to prove knowledge of x_j .
- 4. Publish signed value of y_j and proof π_{x_j} on EB.

Election manager *EM* computes $y = \prod_j y_j \mod P$ and publishes signed value y on *EB*.

 \Rightarrow Value *y* will be used for encrypting the ballots for a given election.

Page 33

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Vote Creation and Casting

To cast a vote, the voting client for voter $V_i \in V$ performs:

- 1. Retrieve election data from Election Board EB.
- 2. Validate signatures.
- 3. Determine $V^* = Votes(C, R)$ election options.

Vote Creation and Casting

To cast a vote, voter $V_i \in V$ performs:

- 1. enters sk_i , the private part of the signature
- 2. Choose vote $v_i \in \mathcal{V}^*$.

Vote Creation and Casting

To cast a vote, the voting client for voter $V_i \in V$ performs:

- 1. Represent v_i as an integer $m_i' = Encode_{C,R}(v_i) \in \mathbb{Z}_Q$.
- 2. Compute $m_i = G(m'_i) \in G_Q$.
- 3. Choose $r_i \in_R \mathbb{Z}_Q$ uniformly at random.
- 4. Compute $E_i = Enc_y(m_i, r_i) = (a_i, b_i)$.
- 5. Compute anonymous verification key $vk'_j = \hat{g}^{sk_i}$, where $j = \psi(i)$.
- 6. Generate π_{r_i} to prove knowledge of (m_i, r_i) .
- 7. Generate signature $S_i = Sign_{sk_i}(id||E_i||\pi_{r_i})$ using \hat{g} .
- 8. Send ballot $B_i = (vk'_j, id, E_i, \pi_{r_i}, S_i)$ to EB.

Vote Recording and Publishing

Upon receipt of B_i , Election manager EB checks:

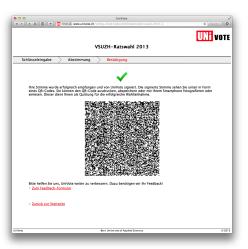
- 1. Check that vk'_i is V_i 's most recent key.
- 2. Check that $Verify_{vk'_i}(id||E_i||\pi_{r_i}, S_i) = accept$ using \hat{g} .
- 3. Check that V_i has not previously submitted another ballot:¹
 - 3.1 Check that no ballot on EB contains vk'_i .
 - 3.2 If $vk'_j \in \bar{VK}'$, check that no ballot on EB contains a former $\text{key } \hat{vk}'_i \in \hat{VK}'$ of V_i .
- 4. Optional: Check correctness of π_{r_i} .

 B_i is published, if all tests succeed.

¹Since re-voting is not supported, only the first ballot counts.

Vote Recording and Publishing

Individual verifiability for voter V_i



Closing the Electronic Urn

Upon closing the electronic urn, the Election Manager *EM* performs:

- 1. For each $B_i = (vk'_i, id, E_i, \pi_{r_i}, S_i)$, do the following:
 - 1.1 Check that $vk'_i \in VK'$.
 - 1.2 Check that $Verify_{vk'_i}(id||E_i||\pi_{r_i}, S_i) = accept$ using \hat{g} .
 - 1.3 Check correctness of π_{r_i} .
- 2. Let \mathcal{B} be the set of ballot B_i , for which all above checks succeed.
- 3. Generate signature $S_{\mathcal{B}} = Sign_{sk_{EM}}(id||\mathcal{B})$.
- 4. Publish $(EM, id, \mathcal{B}, \mathcal{S}_{\mathcal{E}})$ on EB.

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

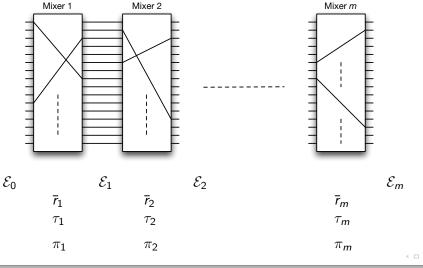
Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Mixing the Encryptions (1)



Mixing the Encryptions (2)

Let $\mathcal{E}_0 = \{E_1, \dots, E_N\}$, $N \leq n$, be the (ordered) set of encrypted votes in \mathcal{B} . For each Mixer $M_k \in M$:

- 1. Shuffle the encrypted votes \mathcal{E}_{k-1} into \mathcal{E}_k :
 - 1.1 Choose $\bar{r}_k = (r_{1k}, \dots, r_{Nk}) \in_R \mathbb{Z}_q^N$ uniformly at random and compute $E'_i = ReEnc_y(E_i, r_{ik})$ for every $E_i \in \mathcal{E}_{k-1}$.
 - 1.2 Choose permutation $\tau_k : [1, N] \to [1, N]$ uniformly at random.
 - 1.3 Let $\mathcal{E}_k = \{E'_{\tau_k(i)} : 1 \le i \le N\} = Shuffle_{\tau_k}(\mathcal{E}_{k-1}, \overline{\tau}_k)$ be the new (ordered) set of encrypted votes shuffled according to τ_k .
- 2. Generate $\pi_k = NIZKP\{(\tau_k, \bar{r}_k) : \mathcal{E}_k = Shuffle_{\tau_k}(\mathcal{E}_{k-1}, \bar{r}_k)\}$ using Wikstroem's proof of a shuffle.
- 3. Generate signature $S_{\mathcal{E}_k} = Sign_{sk_k}(id||\mathcal{E}_k||\pi_k)$.
- 4. Publish $(M_k, id, \mathcal{E}_k, \pi_k, S_{\mathcal{E}_k})$ on EB.
- ⇒ The election manager *EM* no longer knows, who sent which encrypted ballot (even if network addresses were tracked beforehand).

Mixing the Encryptions (3)

Finally, the Election Manager EM performs:

- 1. For each $M_k \in M$:
 - 1.1 Check that $Verify_{vk_k}(id||\mathcal{E}_k||\pi_{\tau_k}, S_{\mathcal{E}_k}) = accept$
 - 1.2 Check correctness of π_{τ_k} .
- 2. Let $\mathcal{E}' = \mathcal{E}_m = \{ E'_{\tau(i)} : 1 \le i \le N \}$ for $\tau = \tau \circ \cdots \circ \tau_1$.
- 3. Generate signature $S_{\mathcal{E}'} = Sign_{sk_{EA}}(id||\mathcal{E}')$.
- 4. Publish $(EM, id, \mathcal{E}', S_{\mathcal{E}'})$ on EB.

 \mathcal{E}' denote the re-encrypted and mixed votes.

Decrypting the Votes

Each $T_j \in T$ knows its private key share x_j and performs the following steps:

- 1. Check that $Verify_{vk_{EM}}(id||\mathcal{E}', S_{\mathcal{E}'}) = accept.$
- 2. Let $\bar{a} = (a_1, \ldots, a_N)$ for $(a_i, b_i) \in \mathcal{E}'$.
- 3. Compute $\bar{a}_j = (a_{1j}, \dots, a_{Nj})$, where $a_{ij} = a_i^{-x_j} \mod P$.
- 4. Generate π'_{x_j} to prove knowledge of x_j and the correct decryption of a_{ij} with x_j .
- 5. Generate signature $S_{\bar{a}_j} = Sign_{sk_j}(id||\bar{a}_j||\pi'_{x_j})$.
- 6. Publish $(T_j, id, \bar{a}_j, \pi'_{x_j}, S_{\bar{a}_j})$ on EB.

Decoding the Votes

Votes are decrypted now, but still encoded. The Election Manager *EM* checks signatures, proofs, and decodes the encoded votes:

- ▶ For all $1 \le i \le N$, do the following:
 - 1. Compute $m_i = b_i \cdot \prod_i a_{ij} \mod P$.
 - 2. Compute $m'_{i} = G^{-1}(m_{i})$.
 - 3. Compute $v_i = Decode_{C,R}(m_i')$.
- ▶ Let $V = \{v_1, ..., v_N\} \cap V^*$ be the list of valid plaintext votes.
 - 1. Generate signature $S_{\mathcal{V}} = Sign_{sk_{cm}}(id||\mathcal{V})$.
 - 2. Publish $(EM, id, \mathcal{V}, \mathcal{S}_{\mathcal{V}})$ on EB.

Plaintext votes can be counted now.

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

Addressing the Secure Platform Problem

At the beginning of 2011, Federal Chancellery of Switzerland asked for a proposal for a verifiable e-voting system.

Looked for a solution that addresses the questions:

- ► How to guarantee that the voter's computer correctly encrypts the ballot?
- How to guarantee that the voter's computer does not compromise secrecy?

Proposed Solution

Voters receive:

- a individualize voting card (smart card)
- a trustworthy device (per household, can be shared)

Similar devices are being used for e-banking.

Requirements for the New Devices

Voting card:

- provides digital identity, i.e., signature key sk_i
- not transferable
- cheap

Voting device:

- has reader for a smart card
- easy to use
- can be used with elections
- implements cryptographic opertions
- cheap

Advantages

- ▶ The computer does not learn...
 - → who voted
 - → how somebody voted
 - → whether somebody actually voted
- "Cast-as-intended" is guaranteed provided that
 - → the voting device is trustworthy
 - → the voting device was challenged (e.g., by fake votes)
- not postal channel required

Downside

- costs are unknown
- usability is unknown
- voting cards can be lost
- ► PIN can be forgotten
- difficult to deploy

Outline

Security Requirements

UniVote

Review of Some Cryptographic Primitives

Voter Registration

Election Setup

Election Period

Mixing, Tallying, and Decrypting Votes

Extension Proposed to Federal Chancellery

Current Status, Concluding Remarks

UniVote

Current status:

▶ in the design phase for second version. . .

Things we focus:

- threshold crypto system for talliers
- Mix-Net proofs
- distributed append-only public bulletin board
- "bullet-proof" append-only public bulletin board

Concept

- ► Federal Chancellery of Switzerland said that the proposal cannot be addressed in short term.
- Said also that it might be addressed in the future.
- However, e-voting system providers must add voter verification features based on return codes (as is done in the Norwegian system).

Thank You

Contact

Eric Dubuis <eric.dubuis@bfh.ch>

E-Voting Group: e-voting.ti.bfh.ch RISIS: ti.bfh.ch/risis

BFH-TI: ti.bfh.ch

