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Hash Function with Multiple Arguments

v

Hash function H : {0,1}* — {0,1}"

Collision: H(x) = H(y) for x # y

Hash function with multiple arguments:
H:{0,1}* x---x{0,1}* — {0,1}"

Collision with multiple arguments:

v

v

v

H(xt, ..o sxx) = H(yr ..., yk), for (xi, ..o %) # (Va5 -+ -5 ¥&)
Note that concatenation || : {0,1}* x --- x {0,1}* — {0,1}*
leads to collisions, for example:

H(0,01) = H(0||01) = H(00||1) = H(00,1)

v



Current Solution: String Concatenation

v

Alphabet A (for example A = {0,1,...,9})
Encoding: ¢ : {0,1}* — A*
Separator: s ¢ A
Decoding: 0 : (AU {s})* — {0,1}*
Hash function with multiple arguments:

HOx -6 = HO((a) sl - - [slle(x0)))
If x; itself is a tuple, it gets even more complicated

v

v

v

v
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New Solution 1: Hash of Hash Values

» Hash function with multiple arguments:
H(x,. .., x) = H(H(xa)l - - - [1H(x))

» Same collision probability as the hash function itself



New Solution 2: Pairing (Tuple) Function

» Encoding: ¢:{0,1}* = N

» Pairing (tuple) function: 1, : N = N

» Decoding: 6 : N — {0,1}*

» Hash function with multiple arguments:
H(xi,...,xx) = HO(Wk(e(x1), - .-, e(x«))))

> If we choose ¢ and § to be the standard binary representation,
we can write

H(Xl, ol ,Xk) = H(wk(Xla oo ,Xk))
» Note that in UniCrypt, we already work with natural numbers
most of the time



Cantor Pairing Function

v

A pairing function maps two natural numbers bijectively into
a single natural number

v

The Cantor pairing function is defined as follows:

1
Y(x1, x2) = E(Xl +x2)(x1 + x4+ 1)+ x

Note that |¢(x1, x2)| = 2- max(|x1], [x2|) + 1

v

» The inverse function ™1 : N = N x N is called unpairing
function

» For y = 9¢(x1,x), let s = L@J and t = (s +s)

» This implies:

(xi,) =9 y)=(y—t,;s+t—y)



Cantor Pairing Function
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Elegant Pairing Function

v

The elegant pairing function is defined as follows:

Y(x1,x2) = {

Note that |¢(x1, x2)| = 2- max(|x1|, |x2|)

For y = t(x1, %), let s = |\/y] and t =y — 5°
This implies:

(x.x) =¢ 7 y) = {

x2 +x1+ X2, if x1 > x0
x1 + x3, otherwise

v

v

v

(t,s), ift<s

(s,t —s), otherwise
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Elegant Pairing Function
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Tuple Function

» Any pairing function can be generalized recursively to a tuple
function ¢, : Nk = N:

P (X x )_ w(@bk_l(Xl,...,Xk_l),Xk), if k>2
AT v, ), i k=2

» The problem with this construction is the exponential size of
the result (relative to k)

» Improved generalization with linear size (relative to k):
Vi (V(x1,x2),...,), if k> 2is even
(X1, ... xk) = w;(w(xl,XQ), ..y Xk), if k> 2is odd
T,Z)(jq,xz), if k=2
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Representing Elements by Natural Numbers
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Groups and Elements

» UniCrypt works with atomic elements of atomic groups

ZPlus: Z

ZPlusMod: Z,

ZStarMod: Z;

GStarMod, GStarPrime, GStarSave: G, C Z,
BooleanGroup: B = {true, false}
SingletonGroup: S = {¢}
PermutationGroup: [y

A

» and arbitrarily complex tuple elements of

— ProductGroup: G X -+ X G
— PowerGroup: G*
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Representing Atomic Elements

v

For every atomic group G, there is an injective function

— ¢g: G — Z, for ZPlus
— ¢g: G — N, for all other groups

with ¢t (dg(e)) = e forall e € G

In UniCrypt, ¢¢(e) corresponds to G.getBigInteger(e) and
¢t (x) corresponds to G.createElement (x)

v

\4

No such mapping exists for tuple elements, i.e., for elements
of ProductGroup or PowerGroup

v

Goal: Representation ¢ : G — N for all possible elements
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Represening Elements of ZPlus

v

Currently, ZP1us is needed as a group of infinite order

— (Z,+) is a cyclic group
— (Z,%), (N,+), (N, ), ...are not groups

v

For an element of ZPlus, we can apply any invertible function
F : Z — N to its integer representation

v

For example, let

2x, if x>0
Flx) = x, if x > .
—(2x + 1), otherwise

v

For y = F(x), we get

Al F_l(y) 1 %z, if Y is even
—2(y + 1), otherwise
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Representing Tuple Elements

» For elements of ProductGroup and PowerGroup, we can
recursively apply the tuple function v

> Let (e1,...,ex) € G be an element of G = Gy X - -+ X G, then

dc(er, ..., ex) = Yr(9g(e) ... oq,(e))
is its unique integer representation

» Note that if all group elements can be represented uniquely by
a natural number, then we can directly compute the element’s
hash value
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Simplified Element Interfaces
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Elements and Sub-Types

> In UniCrypt, there is a one-to-one correspondence between
groups and elements

Group < Element

AtomicGroup < AtomicElement
AdditiveGroup < AdditiveElement
MultiplicativeGroup < MultiplicativeElement
BooleanGroup < BooleanElement
ProductGroup, PowerGroup < TupleElement
PermutationGroup < PermutationElement

Ll

» Trivial type casts are often necessary to guarantee this
correspondence

» Generics seems to be a natural solution, but it only works in
one direction
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Proposal for UniCrypt 2.0

» Reduce everything to Element:

— AtomicElement is no longer needed, since all elements map to
natural numbers (see previous section)

— AdditiveElement only adds syntactic sugar for writing
el.add(e2) instead of el.apply(e2)

— MultiplicativeElement only adds syntactic sugar for
writing el.multiply(e2) instead of el.apply(e2)

— BooleanElement only adds syntactic sugar for writing
true/false instead of 1/0

— TupleElement allows accessing the i-the component of a tuple
element of arity k, but this includes the 'atomic’ case of k =1

» PermutationElement seems to be the only true
specialization of Element
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Proper RSA Implementation
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Algebraic View of RSA

v

RSA does not work with groups
n=pq

ec Z¢(n)

d = e~ ! mod ¢(n)

méE 7y,

¢ = Enc.(m) = m®* mod n € Z,

il L

v

Ence : Zp — Zp, but (Z,, %) is not a group

v

However, (Z,, x) is a monoid (group without invertibility)

v

Therefore, to implement RSA properly in UniCrypt, we need a
super-type Monoid of Group

Note that (N, +) is also a monoid: NPlus instead of ZPlus?

v
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Nomenclature and Factories
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UniCrypt Nomenclature

» The UniCrypt nomenclature for interface and class names is
very self-consistent:

— class UserClass implements User
— class UserAbstract implements User

» Other naming styles:

class User implements IUser

class CUser implements IUser

class UserImpl implements User
class DefaultUser implements User
class AbstractUser implements User

il
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Suggestions and Solutions

» "Name your interface what it is.”

— If your interface is a truck, call it Truck (not ITruck because
it isn't an itruck)

— Then write implementations DumpTruck, CementTruck, etc.

— Don't call it TruckClass that is tautology just as bad as
TruckImpl or ITruck

» "If you ever will have only one implementation, skip the
interface. It creates this naming problem and adds nothing.”

» "Hide the implementation behind a static factory method like
Trucks.create(), for example as an anonymous inner class.”
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Extensions
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Extensions

» Elliptic curves (student UniFR)

— ECGroup
— ECC (ECEIGamalEncryption, ECPedersenCommitment, etc.)

» Zero-Knowledge Proofs

— OR-composition (Jiirg, Philémon)
— Validity proof (Jiirg, Philémon)
— Batch proofs (Philipp)

— Proof of shuffle (Philipp)

— ECC proofs

» Secret sharing (Jiirg)

— Shamir's secret sharing
— Verifiable secret sharing

» Symmetric encryption: AES
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