UniCrypt 2.0

Rolf Haenni
http://e-voting.bfh.ch

Seminar, E-Voting Group, BFH

April 24th, 2013

Outline

Hash Function with Multiple Arguments
Representing Elements by Natural Numbers
Simplified Element Interfaces

Proper RSA Implementation

Nomenclature and Factories

Extensions

Outline

Hash Function with Multiple Arguments

Hash Function with Multiple Arguments

v

Hash function H : {0,1}* — {0,1}"

Collision: H(x) = H(y) for x # y

Hash function with multiple arguments:
H:{0,1}* x---x{0,1}* — {0,1}"

Collision with multiple arguments:

v

v

v

H(xt, ..o sxx) = H(yr ..., yk), for (xi, ..o %) # (Va5 -+ -5 ¥&)
Note that concatenation || : {0,1}* x --- x {0,1}* — {0,1}*
leads to collisions, for example:

H(0,01) = H(0||01) = H(00||1) = H(00,1)

v

Current Solution: String Concatenation

v

Alphabet A (for example A = {0,1,...,9})
Encoding: ¢ : {0,1}* — A*
Separator: s ¢ A
Decoding: 0 : (AU {s})* — {0,1}*
Hash function with multiple arguments:

HOx -6 = HO((a) sl - - [slle(x0)))
If x; itself is a tuple, it gets even more complicated

v

v

v

v

v

New Solution 1: Hash of Hash Values

» Hash function with multiple arguments:
H(x,. .., x) = H(H(xa)l - - - [1H(x))

» Same collision probability as the hash function itself

New Solution 2: Pairing (Tuple) Function

» Encoding: ¢:{0,1}* = N

» Pairing (tuple) function: 1, : N = N

» Decoding: 6 : N — {0,1}*

» Hash function with multiple arguments:
H(xi,...,xx) = HO(Wk(e(x1), - .-, e(x«))))

> If we choose ¢ and § to be the standard binary representation,
we can write

H(Xl, ol ,Xk) = H(wk(Xla oo ,Xk))
» Note that in UniCrypt, we already work with natural numbers
most of the time

Cantor Pairing Function

v

A pairing function maps two natural numbers bijectively into
a single natural number

v

The Cantor pairing function is defined as follows:

1
Y(x1, x2) = E(Xl +x2)(x1 + x4+ 1)+ x

Note that |¢(x1, x2)| = 2- max(|x1], [x2|) + 1

v

» The inverse function ™1 : N = N x N is called unpairing
function

» For y = 9¢(x1,x), let s = L@J and t = (s +s)

» This implies:

(xi,) =9 y)=(y—t,;s+t—y)

Cantor Pairing Function

PN
AN
AN

1 .
u\\z\\s\\g\\m\\m

o e

0 1 2 3 4 5

Elegant Pairing Function

v

The elegant pairing function is defined as follows:

Y(x1,x2) = {

Note that |¢(x1, x2)| = 2- max(|x1|, |x2|)

For y = t(x1, %), let s = |\/y] and t =y — 5°
This implies:

(x.x) =¢ 7 y) = {

x2 +x1+ X2, if x1 > x0
x1 + x3, otherwise

v

v

v

(t,s), ift<s

(s,t —s), otherwise

10

Elegant Pairing Function

=
=)
-
~
-
@
=
o
N ~ [[N]
= (%] w -

~
o

o — o — o —Po P

[N
w
S

Tuple Function

» Any pairing function can be generalized recursively to a tuple
function ¢, : Nk = N:

P (X x)_ w(@bk_l(Xl,...,Xk_l),Xk), if k>2
AT v,), i k=2

» The problem with this construction is the exponential size of
the result (relative to k)

» Improved generalization with linear size (relative to k):
Vi (V(x1,x2),...,), if k> 2is even
(X1, ... xk) = w;(w(xl,XQ), ..y Xk), if k> 2is odd
T,Z)(jq,xz), if k=2

12

Outline

Representing Elements by Natural Numbers

13

Groups and Elements

» UniCrypt works with atomic elements of atomic groups

ZPlus: Z

ZPlusMod: Z,

ZStarMod: Z;

GStarMod, GStarPrime, GStarSave: G, C Z,
BooleanGroup: B = {true, false}
SingletonGroup: S = {¢}
PermutationGroup: [y

A

» and arbitrarily complex tuple elements of

— ProductGroup: G X -+ X G
— PowerGroup: G*

14

Representing Atomic Elements

v

For every atomic group G, there is an injective function

— ¢g: G — Z, for ZPlus
— ¢g: G — N, for all other groups

with ¢t (dg(e)) = e forall e € G

In UniCrypt, ¢¢(e) corresponds to G.getBigInteger(e) and
¢t (x) corresponds to G.createElement (x)

v

\4

No such mapping exists for tuple elements, i.e., for elements
of ProductGroup or PowerGroup

v

Goal: Representation ¢ : G — N for all possible elements

15

Represening Elements of ZPlus

v

Currently, ZP1us is needed as a group of infinite order

— (Z,+) is a cyclic group
— (Z,%), (N,+), (N,), ...are not groups

v

For an element of ZPlus, we can apply any invertible function
F : Z — N to its integer representation

v

For example, let

2x, if x>0
Flx) = x, if x > .
—(2x + 1), otherwise

v

For y = F(x), we get

Al F_l(y) 1 %z, if Y is even
—2(y + 1), otherwise

16

Representing Tuple Elements

» For elements of ProductGroup and PowerGroup, we can
recursively apply the tuple function v

> Let (e1,...,ex) € G be an element of G = Gy X - -+ X G, then

dc(er, ..., ex) = Yr(9g(e) ... oq,(e))
is its unique integer representation

» Note that if all group elements can be represented uniquely by
a natural number, then we can directly compute the element’s
hash value

17

Outline

Simplified Element Interfaces

18

Elements and Sub-Types

> In UniCrypt, there is a one-to-one correspondence between
groups and elements

Group < Element

AtomicGroup < AtomicElement
AdditiveGroup < AdditiveElement
MultiplicativeGroup < MultiplicativeElement
BooleanGroup < BooleanElement
ProductGroup, PowerGroup < TupleElement
PermutationGroup < PermutationElement

Ll

» Trivial type casts are often necessary to guarantee this
correspondence

» Generics seems to be a natural solution, but it only works in
one direction

19

Proposal for UniCrypt 2.0

» Reduce everything to Element:

— AtomicElement is no longer needed, since all elements map to
natural numbers (see previous section)

— AdditiveElement only adds syntactic sugar for writing
el.add(e2) instead of el.apply(e2)

— MultiplicativeElement only adds syntactic sugar for
writing el.multiply(e2) instead of el.apply(e2)

— BooleanElement only adds syntactic sugar for writing
true/false instead of 1/0

— TupleElement allows accessing the i-the component of a tuple
element of arity k, but this includes the 'atomic’ case of k =1

» PermutationElement seems to be the only true
specialization of Element

20

Outline

Proper RSA Implementation

21

Algebraic View of RSA

v

RSA does not work with groups
n=pq

ec Z¢(n)

d = e~ ! mod ¢(n)

méE 7y,

¢ = Enc.(m) = m®* mod n € Z,

il L

v

Ence : Zp — Zp, but (Z,, %) is not a group

v

However, (Z,, x) is a monoid (group without invertibility)

v

Therefore, to implement RSA properly in UniCrypt, we need a
super-type Monoid of Group

Note that (N, +) is also a monoid: NPlus instead of ZPlus?

v

22

Outline

Nomenclature and Factories

23

UniCrypt Nomenclature

» The UniCrypt nomenclature for interface and class names is
very self-consistent:

— class UserClass implements User
— class UserAbstract implements User

» Other naming styles:

class User implements IUser

class CUser implements IUser

class UserImpl implements User
class DefaultUser implements User
class AbstractUser implements User

il

24

Suggestions and Solutions

» "Name your interface what it is.”

— If your interface is a truck, call it Truck (not ITruck because
it isn't an itruck)

— Then write implementations DumpTruck, CementTruck, etc.

— Don't call it TruckClass that is tautology just as bad as
TruckImpl or ITruck

» "If you ever will have only one implementation, skip the
interface. It creates this naming problem and adds nothing.”

» "Hide the implementation behind a static factory method like
Trucks.create(), for example as an anonymous inner class.”

25

Outline

Extensions

26

Extensions

» Elliptic curves (student UniFR)

— ECGroup
— ECC (ECEIGamalEncryption, ECPedersenCommitment, etc.)

» Zero-Knowledge Proofs

— OR-composition (Jiirg, Philémon)
— Validity proof (Jiirg, Philémon)
— Batch proofs (Philipp)

— Proof of shuffle (Philipp)

— ECC proofs

» Secret sharing (Jiirg)

— Shamir's secret sharing
— Verifiable secret sharing

» Symmetric encryption: AES

27

	Hash Function with Multiple Arguments
	Representing Elements by Natural Numbers
	Simplified Element Interfaces
	Proper RSA Implementation
	Nomenclature and Factories
	Extensions

