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2008

2 A Fair and Robust Voting System by Broadcast, Khader, Smyth, Ryan,
Hao 2012

P. von Bergen (BUAS) Voting System by Broadcast March 27, 2013 2 / 28



Outline

1 Anonymous voting by two-round public discussion, Hao, Ryan, Zieliński
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Anonymous voting by two-round public discussion
Base concepts

• Boardroom elections

• No trusted parties

• All communication is public

• Two rounds
1 Key publication
2 Vote

• Challenges
I Ballot secrecy
I Self-tallying
I Dispute-freeness
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Anonymous voting by two-round public discussion
Protocol

Preparation

• Cyclic group (G , ·) of prime order q, where Diffie-Hellman problem is
intractable

• g is a generator in G

• The n participants agree on (G , g)

• Each participant Pi select a value as secret: xi ∈R Zq

• Each participant Pi computes ai = g xi mod p

• Each participant Pi prove the knowledge of xi
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Anonymous voting by two-round public discussion
Protocol

Round 1

• Each participant Pi publishes ai and its ZKP

At the end of round 1

• Each participant Pi checks the validity of the ZKPs

• Each participant Pi computes

hi = g yi =

∏i−1
j=1 aj∏n

j=i+1 aj
= g (x1+...+xi−1)−(xi+1+...+xn) (1)
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Anonymous voting by two-round public discussion
Protocol

Round 2

• Each participant Pi publishes bi = hxii g
vi = g xiyig vi

• Each participant Pi compute and publish a ZKP showing that
vi ∈ {1, 0} (1 for yes, 0 for no)
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Anonymous voting by two-round public discussion
Protocol

Tallying
n∏

i=1

bi =
n∏

i=1

g xiyig vi = g
∑n

i=1 vi

Because
n∏

i=1

g xiyi = 1

Proof
n∏

i=1

g xiyi = 1⇒
n∑

i=1

xiyi = 0

By definition (from (1))

yi =
i−1∑
j=1

xj −
n∑

j=i+1

xj
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Anonymous voting by two-round public discussion
Protocol

Proof (continued)

Hence

n∑
i=1

xiyi =
n∑

i=1

i−1∑
j=1

xixj −
n∑

i=1

n∑
j=i+1

xixj

=
∑∑

j<i

xixj −
∑∑

i<j

xixj

=
∑∑

j<i

xixj −
∑∑

j<i

xjxi

= 0
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Anonymous voting by two-round public discussion
Protocol

Tallying (continued)

n∏
i=1

bi =
n∏

i=1

g xiyig vi = g
∑n

i=1 vi

where
∑n

i=1 vi is the number of yes votes denoted γ.

The discrete logarithm gγ can be computed, since γ is normally a small
number. We can use the baby-step giant-step algorithm.

The ZKPs have also to be verified.
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Knowledge of discrete logs

ZKP round 1: Schnorr’s signature

Prove knowledge for the exponent of g xi :

• H: publicly agreed hash function

• Prover computes and sends (g v , r) where r = v − xiz , v ∈R Zq and
z = H(g , g v , g xi , i)

• Verifier checks if g v and g rg xiz are equal

Proof

g v = g r · g xiz

= g v−xiz · g xiz

=
g v

g xiz
· g xiz

= g v
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Disjunctive proof of equality between discrete logs

ZKP round 2: CDS

Prove that the vi ∈ {0, 1}:
• Convert terms of the protocol in a ElGamal encryption

• hi = g yi becomes the public key and xi the randomization

• (a, b) = (g xi , (g yi )xig vi ) where g vi = 1 or g vi = g
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Sign

• Given (a, b) and vi

• For all k ∈ {0, 1}\vi
• ck ∈R Z∗q, sk ∈R Z∗q, w ∈R Z∗q

• ak = g sk

ack , bk =
h
sk
i(

b

gk

)ck
• Witnesses: av = gw and bv = hwi
• Challenge: cv = H(a, b, a0, b0, a1, b1)−

∑
i∈{0,1}\vi

ci

• Response: sv = w + xi · cv
• Output signature (ak , bk , ck , sk) for all k ∈ {0, 1}
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Verify

• Given (a, b) and (a0, b0, c0, s0, a1, b1, c1, s1)

• For each k ∈ {0, 1}, check if g sk = ak · ack and hski = bk · (b/gk)ck

• Check if H(a, b, a0, b0, a1, b1) =
∑

k∈{0,1}
ck

This signature scheme can be extended to multiple choices.

This signature scheme also includes a challenge cv which acts as a
computationally binding commitment to values a and b, but it is not used
in the above protocol.
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Proof

g sv = av · acv

gw+xi ·cv = gw · acv

= gw · g xicv

hsvi = bv ·
(

b

gk

)cv

hw+xi ·cv
i = hwi ·

(
b

gk

)cv

g yiw+xiyi ·cv = g yiw ·
(

b

gk

)cv

g yiw+xiyi ·cv = g yiw ·
(
g xiyi · g vi

gk

)cv

with gk = g vi
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Anonymous voting by two-round public discussion
Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Proof (continued)

g sk = ak · ack

=
g sk

ack
· acv

hski = bk ·
(

b

gk

)ck

=
hski(
b
gk

)ck · ( b

gk

)ck
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Anonymous voting by two-round public discussion
Extension to multiple candidates

• For elections with only 2 candidates, the same protocol can be used,
instead of sending ’yes/no’, one simply sends ’A/B’.

• For more candidates, a possibility would be to run the
single-candidate protocol in parallel for k candidates

• Another way if each voter is only permitted to choose one candidate
is following:

I k independent generator are used (one for each candidate)
I in second round Pi sends g xiyi · %i with a ZKP that ρi ∈ {g1, g2, ..., gk}
I tallying:

∏n
i=1 g

xiyi · %i = g c1
1 · g

c2
2 · · · g

ck
k where c1 to ck are the counts

of votes for the k candidates correspondingly
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Anonymous voting by two-round public discussion
Challenges

• Ballot secrecy:
I ballot is encrypted with ElGamal (g xi , (g xi )yi · g vi )
I yi is unknown to attackers as it is computed from all xi which is a

random value in Zq

I under the decisional Diffie-Hellman assumption, an attacker cannot
distinguish the encrypted ballot from a random group element.

I zero knowledge proofs don’t reveal any information more than intended

• Self-tallying: as we have seen, this requirement is satisfied.

• Dispute freeness: as the channel is public and authenticated, each
voter can verify that the other voters followed the protocol. More
over, the Zero Knowledges Proofs proves the respect of the rules.
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Anonymous voting by two-round public discussion
Problems

• The last voter knows the result before other voters ⇒ no fairness

• If a voter aborts in the second round, she disrupts the election ⇒ no
robustness
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A Fair and Robust Voting System by Broadcast
Base concepts

• Resolves the problems of HRZ10

• Adds a commitment round

• Allows to recover the result when a voter has aborted a round

• Three (four) rounds
1 Setup
2 Commitment
3 Vote
4 (Recovery)
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A Fair and Robust Voting System by Broadcast
Commitment round (Second round)

• The computationally binding in CDS signature scheme (second ZKP)
is used

• bi value is not published in commitment round

• ⇒ So, no partial result can be compute before all voters have voted

• bi value is publish in the third round (Voting round)
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A Fair and Robust Voting System by Broadcast
Recovery round

• If a voter refuses to vote, her bi = g yixi · g vi is not published

•
∏n

i=1 bi = g
∑n

i=1 vi can’t be computed

So,

• let be L the set of voter that have published a valid vote

• each voter i ∈ L computes

ĥi =

∏
j∈{i+1,...,n}\L

aj∏
j∈{1,...,i−1}\L

aj
= g ŷi

• and publish ĥxi with a ZKP that logg ai = logĥi ĥ
xi
i

⇒ logg g
xi = logĥi ĥ

xi
i
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A Fair and Robust Voting System by Broadcast
Tallying

Tallying

g

∑
i∈L

vi
=
∏
i∈L

ĥxii · h
xi
i · g

vi =
∏
i∈L

ĥxii · bi

where
∑
i∈L

vi is the number of yes.
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A Fair and Robust Voting System by Broadcast
Tallying

Proof

g

∑
i∈L

vi
=
∏
i∈L

g ŷixi · g yixi · g vi = g

∑
i∈L

xiyi+xi ŷi
· g
∑
i∈L

vi
= g0 · g

∑
i∈L

vi

With

yi =
i−1∑
j=1

xj −
n∑

j=i+1

xj

ŷi =
∑

j∈{i+1,...,n}\L

xj −
∑

j∈{1,...,i−1}\L

xj

Thus ∑
j∈L

(xiyi ) + (xi ŷi ) = 0
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A Fair and Robust Voting System by Broadcast
Zero knowledge proof: Equality between discrete logs

• Goal: prove that ĥxi has been computed correctly

logg g
xi = logĥi ĥ

xi
i

• Sign:
I given g , ĥi , xi select a random value w ∈ Z∗q
I compute g ′ = gw and ĥ′i = ĥwi , challenge c = H(g ′, ĥ′i ), response

s = w + c · xi
I publish (g ′, ĥ′i , s)

• Verify:
I given g , ĥi , g

xi , ĥxii and signature (g ′, ĥ′i , s) check if g s = g ′ · (g xi )c and

ĥsi = ĥ′i · (ĥ
xi
i )c where c = H(g ′, ĥ′i )
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A Fair and Robust Voting System by Broadcast
Summary

1 Setup Round
I choose xi
I compute and publish g xi

I at the end of the round, compute g yi = hi
2 Commitment Round

I choose vi
I compute signature that vi ∈ {0, 1} which also works as commitment

3 Voting Round
I publish vi

4 Recovery Round if needed
I compute ĥi

5 Tallying
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A Fair and Robust Voting System by Broadcast
Summary

Added properties:

• Fairness

• Robustness
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