A Fair and Robust Voting System by Broadcast

P. von Bergen

Bern University of Applied Sciences

March 27, 2013

Outline

(1) Anonymous voting by two-round public discussion, Hao, Ryan, Zieliński 2008
(2) A Fair and Robust Voting System by Broadcast, Khader, Smyth, Ryan, Hao 2012

Outline

(1) Anonymous voting by two-round public discussion, Hao, Ryan, Zieliński 2008
(2) A Fair and Robust Voting System by Broadcast, Khader, Smyth, Ryan, Hao 2012

Anonymous voting by two-round public discussion

Base concepts

- Boardroom elections
- No trusted parties
- All communication is public
- Two rounds
(1) Key publication
(2) Vote
- Challenges
- Ballot secrecy
- Self-tallying
- Dispute-freeness

Anonymous voting by two-round public discussion Protocol

Preparation

- Cyclic group (G, \cdot) of prime order q, where Diffie-Hellman problem is intractable
- g is a generator in G
- The n participants agree on (G, g)
- Each participant P_{i} select a value as secret: $x_{i} \in_{R} \mathbb{Z}_{q}$
- Each participant P_{i} computes $a_{i}=g^{x_{i}} \bmod p$
- Each participant P_{i} prove the knowledge of x_{i}

Anonymous voting by two-round public discussion

Protocol

Round 1

- Each participant P_{i} publishes a_{i} and its ZKP

At the end of round 1

- Each participant P_{i} checks the validity of the ZKPs
- Each participant P_{i} computes

$$
\begin{equation*}
h_{i}=g^{y_{i}}=\frac{\prod_{j=1}^{i-1} a_{j}}{\prod_{j=i+1}^{n} a_{j}}=g^{\left(x_{1}+\ldots+x_{i-1}\right)-\left(x_{i+1}+\ldots+x_{n}\right)} \tag{1}
\end{equation*}
$$

Anonymous voting by two-round public discussion

Protocol

Round 2

- Each participant P_{i} publishes $b_{i}=h_{i}^{x_{i}} g^{v_{i}}=g^{x_{i} y_{i}} g^{v_{i}}$
- Each participant P_{i} compute and publish a ZKP showing that $v_{i} \in\{1,0\}$ (1 for yes, 0 for no)

Anonymous voting by two-round public discussion

Protocol

Tallying

$$
\prod_{i=1}^{n} b_{i}=\prod_{i=1}^{n} g^{x_{i} y_{i}} g^{v_{i}}=g^{\sum_{i=1}^{n} v_{i}}
$$

Because

$$
\prod_{i=1}^{n} g^{x_{i} y_{i}}=1
$$

Proof

$$
\prod_{i=1}^{n} g^{x_{i} y_{i}}=1 \Rightarrow \sum_{i=1}^{n} x_{i} y_{i}=0
$$

By definition (from (1))

$$
y_{i}=\sum_{j=1}^{i-1} x_{j}-\sum_{j=i+1}^{n} x_{j}
$$

Anonymous voting by two-round public discussion

 ProtocolProof (continued)
Hence

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} y_{i} & =\sum_{i=1}^{n} \sum_{j=1}^{i-1} x_{i} x_{j}-\sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{i} x_{j} \\
& =\sum_{j<i} \sum_{i} x_{i} x_{j}-\sum_{i<j} \sum_{j} x_{i} x_{j} \\
& =\sum_{j<i} \sum_{i} x_{i} x_{j}-\sum \sum_{j<i} x_{j} x_{i} \\
& =0
\end{aligned}
$$

Anonymous voting by two-round public discussion
 Protocol

Tallying (continued)

$$
\prod_{i=1}^{n} b_{i}=\prod_{i=1}^{n} g^{x_{i} y_{i}} g^{v_{i}}=g^{\sum_{i=1}^{n} v_{i}}
$$

where $\sum_{i=1}^{n} v_{i}$ is the number of yes votes denoted γ.

The discrete logarithm g^{γ} can be computed, since γ is normally a small number. We can use the baby-step giant-step algorithm.

The ZKPs have also to be verified.

Anonymous voting by two-round public discussion

Zero knowledge proofs: Knowledge of discrete logs
ZKP round 1: Schnorr's signature

Prove knowledge for the exponent of $g^{x_{i}}$:

- H : publicly agreed hash function
- Prover computes and sends $\left(g^{v}, r\right)$ where $r=v-x_{i} z, v \in_{R} \mathbb{Z}_{q}$ and $z=H\left(g, g^{v}, g^{x_{i}}, i\right)$
- Verifier checks if g^{v} and $g^{r} g^{x_{i} z}$ are equal

Proof

$$
\begin{aligned}
g^{v} & =g^{r} \cdot g^{x_{i} z} \\
& =g^{v-x_{i} z} \cdot g^{x_{i} z} \\
& =\frac{g^{v}}{g^{x_{i} z}} \cdot g^{x_{i} z} \\
& =g^{v}
\end{aligned}
$$

Anonymous voting by two-round public discussion

Zero knowledge proofs: Disjunctive proof of equality between discrete logs

ZKP round 2: CDS

Prove that the $v_{i} \in\{0,1\}$:

- Convert terms of the protocol in a ElGamal encryption
- $h_{i}=g^{y_{i}}$ becomes the public key and x_{i} the randomization
- $(a, b)=\left(g^{x_{i}},\left(g^{y_{i}}\right)^{x_{i}} g^{v_{i}}\right)$ where $g^{v_{i}}=1$ or $g^{v_{i}}=g$

Anonymous voting by two-round public discussion

Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Sign

- Given (a, b) and v_{i}
- For all $k \in\{0,1\} \backslash v_{i}$
- $c_{k} \in_{R} \mathbb{Z}_{q}^{*}, s_{k} \in_{R} \mathbb{Z}_{q}^{*}, w \in_{R} \mathbb{Z}_{q}^{*}$
- $a_{k}=\frac{g^{s_{k}}}{a^{c}}, b_{k}=\frac{h_{i}^{s_{k}}}{\left(\frac{b}{g^{k}}\right)^{c_{k}}}$
- Witnesses: $a_{v}=g^{w}$ and $b_{v}=h_{i}^{w}$
- Challenge: $c_{v}=H\left(a, b, a_{0}, b_{0}, a_{1}, b_{1}\right)-\sum_{i \in\{0,1\} \backslash v_{i}} c_{i}$
- Response: $s_{v}=w+x_{i} \cdot c_{v}$
- Output signature ($a_{k}, b_{k}, c_{k}, s_{k}$) for all $k \in\{0,1\}$

Anonymous voting by two-round public discussion

Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Verify

- Given (a, b) and ($a_{0}, b_{0}, c_{0}, s_{0}, a_{1}, b_{1}, c_{1}, s_{1}$)
- For each $k \in\{0,1\}$, check if $g^{s_{k}}=a_{k} \cdot a^{c_{k}}$ and $h_{i}^{s_{k}}=b_{k} \cdot\left(b / g^{k}\right)^{c_{k}}$
- Check if $H\left(a, b, a_{0}, b_{0}, a_{1}, b_{1}\right)=\sum_{k \in\{0,1\}} c_{k}$

This signature scheme can be extended to multiple choices.

This signature scheme also includes a challenge c_{v} which acts as a computationally binding commitment to values a and b, but it is not used in the above protocol.

Anonymous voting by two-round public discussion

Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Proof

$$
\begin{aligned}
& g^{S_{v}}=a_{v} \cdot a^{c_{v}} \\
& g^{w+x_{i} \cdot c_{v}}=g^{w} \cdot a^{c_{v}} \\
& =g^{w} \cdot g^{x_{i} c_{v}} \\
& h_{i}^{s_{v}}=b_{v} \cdot\left(\frac{b}{g^{k}}\right)^{c_{v}} \\
& h_{i}^{w+x_{i} \cdot c_{v}}=h_{i}^{w} \cdot\left(\frac{b}{g^{k}}\right)^{c_{v}} \\
& g^{y_{i} w+x_{i} y_{i} \cdot c_{v}}=g^{y_{i} w} \cdot\left(\frac{b}{g^{k}}\right)^{c_{v}} \\
& g^{y_{i} w+x_{i} y_{i} \cdot c_{v}}=g^{y_{i} w} \cdot\left(\frac{g^{x_{i} y_{i}} \cdot g^{v_{i}}}{g^{k}}\right)^{c_{v}} \text { with } g^{k}=g^{v_{i}}
\end{aligned}
$$

Anonymous voting by two-round public discussion

Zero knowledge proofs: Disjunctive proof of equality between discrete logs

Proof (continued)

$$
\begin{gathered}
g^{g_{k}}=a_{k} \cdot a^{c_{k}} \\
=\frac{g^{s_{k}}}{a^{c_{k}}} \cdot a^{c_{v}} \\
h_{i}^{s_{k}}=b_{k} \cdot\left(\frac{b}{g^{k}}\right)^{c_{k}} \\
=\frac{h_{i}^{s_{k}}}{\left(\frac{b}{g^{k}}\right)^{c_{k}}} \cdot\left(\frac{b}{g^{k}}\right)^{c_{k}}
\end{gathered}
$$

Anonymous voting by two-round public discussion

Extension to multiple candidates

- For elections with only 2 candidates, the same protocol can be used, instead of sending 'yes/no', one simply sends 'A/B'.
- For more candidates, a possibility would be to run the single-candidate protocol in parallel for k candidates
- Another way if each voter is only permitted to choose one candidate is following:
- k independent generator are used (one for each candidate)
- in second round P_{i} sends $g^{x_{i} y_{i}} \cdot \varrho_{i}$ with a ZKP that $\rho_{i} \in\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$
- tallying: $\prod_{i=1}^{n} g^{x_{i} y_{i}} \cdot \varrho_{i}=g_{1}^{c_{1}} \cdot g_{2}^{c_{2}} \cdots g_{k}^{c_{k}}$ where c_{1} to c_{k} are the counts of votes for the k candidates correspondingly

Anonymous voting by two-round public discussion

Challenges

- Ballot secrecy:
- ballot is encrypted with ElGamal $\left(g^{x_{i}},\left(g^{x_{i}}\right)^{y_{i}} \cdot g^{v_{i}}\right)$
- y_{i} is unknown to attackers as it is computed from all x_{i} which is a random value in \mathbb{Z}_{q}
- under the decisional Diffie-Hellman assumption, an attacker cannot distinguish the encrypted ballot from a random group element.
- zero knowledge proofs don't reveal any information more than intended
- Self-tallying: as we have seen, this requirement is satisfied.
- Dispute freeness: as the channel is public and authenticated, each voter can verify that the other voters followed the protocol. More over, the Zero Knowledges Proofs proves the respect of the rules.

Anonymous voting by two-round public discussion

Problems

- The last voter knows the result before other voters \Rightarrow no fairness
- If a voter aborts in the second round, she disrupts the election \Rightarrow no robustness

Outline

(1) Anonymous voting by two-round public discussion, Hao, Ryan, Zieliński 2008
(2) A Fair and Robust Voting System by Broadcast, Khader, Smyth, Ryan, Hao 2012

A Fair and Robust Voting System by Broadcast

Base concepts

- Resolves the problems of HRZ10
- Adds a commitment round
- Allows to recover the result when a voter has aborted a round
- Three (four) rounds
(1) Setup
(2) Commitment
(3) Vote
(1) (Recovery)

A Fair and Robust Voting System by Broadcast

Commitment round (Second round)

- The computationally binding in CDS signature scheme (second ZKP) is used
- b_{i} value is not published in commitment round
- \Rightarrow So, no partial result can be compute before all voters have voted
- b_{i} value is publish in the third round (Voting round)

A Fair and Robust Voting System by Broadcast

Recovery round

- If a voter refuses to vote, her $b_{i}=g^{y_{i} x_{i}} \cdot g^{v_{i}}$ is not published
- $\prod_{i=1}^{n} b_{i}=g^{\sum_{i=1}^{n} v_{i}}$ can't be computed

So,

- let be L the set of voter that have published a valid vote
- each voter $i \in L$ computes

$$
\hat{h}_{i}=\frac{\prod_{j \in\{i+1, \ldots, n\} \backslash L} a_{j}}{\prod_{j \in\{1, \ldots, i-1\} \backslash L} a_{j}}=g^{\hat{y}_{i}}
$$

- and publish $\hat{h}^{x_{i}}$ with a ZKP that $\log _{g} a_{i}=\log _{\hat{h}_{i}} \hat{h}_{i}^{x_{i}}$
$\Rightarrow \log _{g} g^{x_{i}}=\log _{\hat{h}_{i}} \hat{h}_{i}^{x_{i}}$

A Fair and Robust Voting System by Broadcast

Tallying

Tallying

$$
g^{\sum_{i \in L}^{v_{i}}}=\prod_{i \in L} \hat{h}_{i}^{x_{i}} \cdot h_{i}^{x_{i}} \cdot g^{v_{i}}=\prod_{i \in L} \hat{h}_{i}^{x_{i}} \cdot b_{i}
$$

where $\sum_{i \in L} v_{i}$ is the number of yes.

A Fair and Robust Voting System by Broadcast

Tallying

Proof

$$
g^{\sum_{i \in L} v_{i}}=\prod_{i \in L} g^{\hat{y}_{i} x_{i}} \cdot g^{y_{i} x_{i}} \cdot g^{v_{i}}=g^{\sum_{i \in L} x_{i} y_{i}+x_{i} \hat{y}_{i}} \cdot g^{\sum_{i \in L} v_{i}}=g^{0} \cdot g^{\sum_{i \in L} v_{i}}
$$

With

$$
\begin{array}{r}
y_{i}=\sum_{j=1}^{i-1} x_{j}-\sum_{j=i+1}^{n} x_{j} \\
\hat{y}_{i}=\sum_{j \in\{i+1, \ldots, n\} \backslash L} x_{j}-\sum_{j \in\{1, \ldots, i-1\} \backslash L} x_{j}
\end{array}
$$

Thus

$$
\sum_{j \in L}\left(x_{i} y_{i}\right)+\left(x_{i} \hat{y}_{i}\right)=0
$$

A Fair and Robust Voting System by Broadcast

Zero knowledge proof: Equality between discrete logs

- Goal: prove that $\hat{h}^{x_{i}}$ has been computed correctly

$$
\log _{g} g^{x_{i}}=\log _{\hat{h}_{i}} \hat{h}_{i}^{x_{i}}
$$

- Sign:
- given g, \hat{h}_{i}, x_{i} select a random value $w \in \mathbb{Z}_{q}^{*}$
- compute $g^{\prime}=g^{w}$ and $\hat{h}_{i}^{\prime}=\hat{h}_{i}^{w}$, challenge $c=H\left(g^{\prime}, \hat{h}_{i}^{\prime}\right)$, response

$$
s=w+c \cdot x_{i}
$$

- publish $\left(g^{\prime}, \hat{h}_{i}^{\prime}, s\right)$
- Verify:
- given $g, \hat{h}_{i}, g^{x_{i}}, \hat{h}_{i}^{x_{i}}$ and signature $\left(g^{\prime}, \hat{h}_{i}^{\prime}, s\right)$ check if $g^{s}=g^{\prime} \cdot\left(g^{x_{i}}\right)^{c}$ and $\hat{h}_{i}^{s}=\hat{h}_{i}^{\prime} \cdot\left(\hat{h}_{i}^{x_{i}}\right)^{c}$ where $c=H\left(g^{\prime}, \hat{h}_{i}^{\prime}\right)$

A Fair and Robust Voting System by Broadcast

Summary

(1) Setup Round

- choose x_{i}
- compute and publish $g^{x_{i}}$
- at the end of the round, compute $g^{y_{i}}=h_{i}$
(2) Commitment Round
- choose v_{i}
- compute signature that $v_{i} \in\{0,1\}$ which also works as commitment
(3) Voting Round
- publish v_{i}
(4) Recovery Round if needed
- compute \hat{h}_{i}
© Tallying

A Fair and Robust Voting System by Broadcast

 SummaryAdded properties:

- Fairness
- Robustness

