Internet Voting with Trusted Hardware

Rolf Haenni & Reto E. Koenig

Research Institute for Security in the Information Society (RISIS) Bern University of Applied Sciences (BFH)

Verifiable Voting Schemes Workshop

University of Luxembourg March 21–22, 2013

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

Internet Voting

- The Internet is untrustworthy
- Voters are untrustworthy
- Voting authorities are (possibly) untrustworthy
- The voters' personal computers are untrustworthy

Internet Voting

- The Internet is untrustworthy
- Voters are untrustworthy
- Voting authorities are (possibly) untrustworthy
- The voters' personal computers are untrustworthy

Secure platform problem

Internet Voting in Switzerland

- Direct democracy
- Many referendums and popular initiatives
- Usually four voting periods/year
- On federal, cantonal, communal level
- Plus elections every 4 years
- Full voting rights for expatriates
- 3 different Internet voting systems in use
- 10 years experience

Internet Voting in Switzerland

- Direct democracy
- Many referendums and popular initiatives
- Usually four voting periods/year
- On federal, cantonal, communal level
- Plus elections every 4 years
- Full voting rights for expatriates
- 3 different Internet voting systems in use
- 10 years experience

Secure platform problem unsolved

Verifiable Internet Voting in Switzerland

- Baloti: Voting platform for migrants (2009–2011)
- UniVote: Student board elections (since 2012)
 - → University of Berne (today at 12am)
 - → Berne University of Applied Sciences (next week)
 - → University of Zurich (next month)
 - → University of Basel
- PrimeVote: Internet voting for shareholder meetings

Verifiable Internet Voting in Switzerland

- Baloti: Voting platform for migrants (2009–2011)
- UniVote: Student board elections (since 2012)
 - → University of Berne (today at 12am)
 - → Berne University of Applied Sciences (next week)
 - → University of Zurich (next month)
 - → University of Basel
- PrimeVote: Internet voting for shareholder meetings

Secure platform problem unsolved

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

Secure Platform Problem

- Theory: Voters have access to reliable computers that ...
 - → display correct election information
 - → encode and encrypt vote (as intended)
 - → do other cryptographic computations (signature, ZKP, ...)

Secure Platform Problem

- Theory: Voters have access to reliable computers that ...
 - display correct election information
 - encode and encrypt vote (as intended)
 - ightarrow do other cryptographic computations (signature, ZKP, ...)
- Practice: Voters use unreliable computers
 - → Viruses, man-in-the-browser, Trojans, spyware, keylogger, ...
 - → Estimated 1.4 millions new Windows malware in 2012
 - → Eurograbber: estimated 36 millions Euros stolen

Making the platform secure:

- Anti-malware software, firewall, etc.
- Booting from trustworthy media (CD, USB stick, etc.)
- Trusted computing

Making the platform secure:

- Anti-malware software, firewall, etc.
- Booting from trustworthy media (CD, USB stick, etc.)
- Trusted computing
- Limitations:
 - → Outdated anti-malware software
 - System incompatibilities
 - Booting not supported
 - → User acceptance

Using an auxiliary trusted channel:

- Code voting
- Verifications codes
- Finalization codes
- Postal mail (SMS, telephone)

Using an auxiliary trusted channel:

- Code voting
- Verifications codes
- Finalization codes
- Postal mail (SMS, telephone)
- Limitations:
 - → Repetitive costs for every election
 - → Slow
 - → Usability
 - → Secure printing
 - → Reliability of auxiliary channel

Challenge insecure platform with indistinguishable test ballots

- Voter-initiated auditing (Benaloh, 2007)
- Implemented in Helios
- Test elections indistinguishable from real ones

Challenge insecure platform with indistinguishable test ballots

- Voter-initiated auditing (Benaloh, 2007)
- Implemented in Helios
- Test elections indistinguishable from real ones
- Limitations:
 - → Integrity of real ballot not guaranteed
 - Auditing on different platform
 - → Usability
 - → Confusing for voters

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

Requirements

- Easy to use (even for complex elections)
- Simple (no system updates)
- Efficient (cryptographic computations)
- Flexible enough to work with different voting protocols
- Offline
- Reliable
- Low-priced

General Concept

Demo

- Simulation on smartphones
- Bachelor thesis (von Bergen, Pellegrini, 2012)

Personal Voting Card

- Personal smartcard
- Provides an authentication mechanism
- Stores the voter's voting credentials
- Generates credentials on board
- Cryptographic computations involving the credentials

Voting Device

- Impersonal (e.g., one per household)
- Card reader slot
- Small textual display
- Keypad (PIN, scrolling)
- Optical scanner to read 2D-barcodes
- Software-closed
- Tamper-resistant
- Offline
- Cryptographic computations: vote encryption, ZKP, ...

Voting Platform

- Web application (with standard security measures)
- No login process
- No secret data
- Maximal usability
- Display 2D-barcodes containing . . .
 - → signed election description
 - → signed options
 - → other cryptographic elements (depending on protocol in use)

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

- The voter's untrustworthy personal device ...
 - \rightarrow is no longer the communication channel endpoint
 - → broadcasts over an optical channel
 - → does not learn the voter's choice

- The voter's untrustworthy personal device ...
 - \rightarrow is no longer the communication channel endpoint
 - → broadcasts over an optical channel
 - → does not learn the voter's choice

- ► The voter's untrustworthy personal device ...
 - → is no longer the communication channel endpoint
 - → broadcasts over an optical channel
 - → does not learn the voter's choice

- The trustworthy voting device ...
 - → displays the official election information
 - \rightarrow lets the voter confirm the choice
 - → generates and encrypts the vote

- The voter's untrustworthy personal device ...
 - → is no longer the communication channel endpoint
 - → broadcasts over an optical channel
 - → does not learn the voter's choice

- The trustworthy voting device ...
 - → displays the official election information
 - → lets the voter confirm the choice
 - → generates and encrypts the vote

- The voter's untrustworthy personal device ...
 - → is no longer the communication channel endpoint
 - → broadcasts over an optical channel
 - → does not learn the voter's choice

- The trustworthy voting device ...
 - → displays the official election information
 - → lets the voter confirm the choice
 - → generates and encrypts the vote
 - → performs all cryptographic operations
 - → does not generate a receipt

Receipt-Freeness √

Costs

- Design, production, distribution is expensive
- Costs can be shared among multiple users
- Use for other application (online banking)
- Reduced/modest costs to run the voting web application
- Switzerland: costs per vote reasonably small

Example: Cronto Device

Outline

Motivation

Secure Platform Problem

Internet Voting with Trusted Hardware

Discussion

Conclusion

Conclusion

- Protects vote secrecy and vote integrity
- Compromise between usability, simplicity, costs
- Vote preparation on all platforms (even on paper)
- Compatible with various cryptographic voting protocols
- May help to prevent vote buying / coercion
- Possibly applicable to other applications

Reference

🔋 Rolf Haenni & Reto E. Koenig

Voting over the Internet on an Insecure Platform.

Design, Development, and Use of Secure Electronic Voting Systems IGI Global, 2013 (to appear)