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Motivation

Proving multiple instances of the same type of zero-knowledge
proof can be done in two ways

1. Standard AND-composition proof

— Linear proof size (commitment, response)
— Linear running time (generation, verification)

2. Batch Proof

— Constant proof size
— Improved running time



Applications

» Multi-decryption of ciphertexts c1, ..., cp
— ¢; = (a;, bj) = ElGamal ciphertext
— mj = bj - a; * = decryption with private key x
» Multi-committment to messages my, ..., m, (e.g. commiting
to a matrix)
— m; = i-th column vector of M
— ¢; = C(m;,s;) = extended Pedersen commitment of m;
» Multi-blinding values x1, ..., xp
— z = common blinding value
— x! = x7 = blinding of x;
» Commitment multiplication proof of length > 2



Overview

Non-interactive
single proof
(Fiat, Shamir, 1986)

Single generic proof
(Maurer, 2009)

Single proof Batch proof
(e.g. Schnorr, 1991) (Bellare et al., 1998)



Overview

Non-interactive
single proof
(Fiat, Shamir, 1986)

Single generic proof
(Maurer, 2009) 1) Generic batch
proof

1)

Single proof Batch proof
(e.g. Schnorr, 1991) (Bellare et al., 1998)



Overview

Non-interactive
single proof
(Fiat, Shamir, 1986)

Single generic proof
(Maurer, 2009)

Non-interactive
generic batch proof

Single proof
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Non-Interactive Preimage Proof

v

v

v

v

v

Let (X,+,0) and (Y, x,1) be groups of finite order
Consider a one-way group homomorphism ¢ : X — Y

Let b = ¢(a) be publicly known
The prover P proves knowledge of a using the >-protocol:

1.

o1k W

Choose w €g X uniformly at random
Compute t = ¢(w)

Compute ¢ = H(b, t)

Compute s=w+c-a

Publish = = (t, s)

To verify 7, the verifier V computes ¢ = H(b, t) and checks
o(s) =t b

12
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Example 1: Discrete Logarithm (Schnorr)

> Let g be a generator of Gq
> Let c = g™ be a publicly known commitment of m € Z4

> P proves knowledge of m using the ¥-protocol for:

a=m,
b=c,
o(x) = g%,

where ¢ : Zg — Gq
~ =~

X Y

14



Example 2: Pedersen Commitment

> Let g and h be generators of G,

> Let c = g™h® be a publicly known Pedersen commitment of
m € Zgq with randomization s € Z4

> P proves knowledge of m and s using the ¥ -protocol for:
a=(m,s),
b=c,
P(x1, x2) = g h*,
where ¢ : Zg X Zq — Gq
—_— =~

X Y
» Note that w = (w1, ws) and s = (s, s2), but t is a single value

15



Example 3: Equality of Discrete Logarithms

> Let g1 and g» be generators of G,
> Let ¢; = g{" and ¢ = g3" be public commitments of m € Zj,

> P proves knowledge of m using the ¥-protocol for:

where ¢ 1 Zg — Gg x Gq
~— —_———
X Y
» Note that t = (t1, t2), but w and s are single values

16
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Composed Proofs

» Consider n one-way group homomorphisms ¢; : X; — Y;

> Let by,..., b, be publicly known, where b; = ¢;(a;)

» P proves knowledge of as, ..., a, using the X-protocol for:
a=(a,...,an),
b= (b1,...,bn),

d(x1, - xn) = (1(x1), - -, Pn(xn)),

where ¢ : Xy X - x X;, = Y1 X+ X Y,

X Y
» Note that w = (w1,...,wp), t = (t1,...,tn), S =(S1,...,5n)

18



Composed Proofs: Performance

v

Proof m = (t,s) has size O(n)
Generation: O(n)

v

— Let 7 be the average number of modExps in ¢;
— Computing ¢(w) requires n - F modExps
— modExps(n) =n-F
Verification: O(n)
— Computing ¢(s) requires n- 7 modExps
— Computing b¢ requires n modExps
— modExps(n) = n- (F+1)

Remark: c is usually small (e.g., 160 bits for SHA-1)

v

v

19



Special Case 1: Common Function

v

Consider a single one-way group homomorphism ¢ : X — Y

v

Let by,..., b, be publicly known, where b; = ¢(a;)

v

P proves knowledge of aj, ..., a, using the X-protocol for:

a=(a1,...,an),
b= (bi,....bn)

(X17 . ) (C,‘b(xl)w-'ag/)(xn))a
where ¢ : X X -+ - x X — Y x---x Y

X Y
» Note that w = (w1,...,wn), t =(t1,...,tn), s = (S1,..-,5n)
> Proof size and performance remain unchanged

20



Special Case 2: Common Preimage

v

Consider n one-way group homomorphisms ¢; : X — Y

v

Let by, ..., b, be publicly known, where b; = ¢;(2a)

v

P proves knowledge of a using the X-protocol for:

b=(by,..., by,
B(x) = (61(x), - - -, dn(x)),

where g : X - Y x---xY
~——

Y
Note that t = (t1,...,t,), but w and s are single values

v

v

Improved (linear) proof size, performance remains unchanged

21
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Type-1 Batch Proof

» Consider a single one-way group homomorphism ¢ : X — Y
> Let by,..., b, be publicly known, where b; = ¢(a;)
» P proves knowledge of as, ..., a, as follows:

— V chooses ey, ..., e, uniformly at random

b=]]bf = H¢ )® —H¢ (eiai) = ¢(>_ eia)
— P generates a preimage proof 7 = (t,s) for a= )", e;a; and
b= ¢(a)

» V computes b =[], b’ and verifies 7

v

Note that P does not need to compute b = []; b/’

24



Type-1 Batch Proof: Non-Interactive Version

v

v

v

v

Consider a single one-way group homomorphism ¢ : X — Y
Let by, ..., b, be publicly known, where b; = ¢(a;)

P proves knowledge of a1, ..., a, as follows:

Choose w €g X uniformly at random

Compute t = ¢(w)

Compute e; = H(b;, t) fori=1,...,n

Compute a =), gja;

Compute ¢ = H(b, t)

Compute s=w-+c-a

Publish 7 = (t, s)

V computes e; = H(bj,t), c = H(b1,...,bp, t), b=T]; bf,

and checks ¢(s) Ztope

Nk W=
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Type-1 Batch Proof: Non-Interactive Version

v

v

v

v

Consider a single one-way group homomorphism ¢ : X — Y
Let by, ..., b, be publicly known, where b; = ¢(a;)

P proves knowledge of a1, ..., a, as follows:

Choose w €g X uniformly at random

Compute t = ¢(w)

Compute e; = H(b;, t) fori=1,...,n

Compute a =), gja;

Compute ¢ = H(b, t) < we don't want P to compute b

Compute s=w-+c-a
Publish 7 = (t, s)

V computes e; = H(bj,t), c = H(b1,...,bp, t), b=T]; bf,
and checks ¢(s) Ztope

Nooas W=

26



Type-1 Batch Proof: Non-Interactive Version

v

v

v

v

Consider a single one-way group homomorphism ¢ : X — Y
Let by, ..., b, be publicly known, where b; = ¢(a;)

P proves knowledge of a1, ..., a, as follows:

Choose w €g X uniformly at random

Compute t = ¢(w)

Compute e; = H(b;, t) fori=1,...,n

Compute a =), gja;

Compute ¢ = H(b1, ..., bp, t)

Compute s=w-+c-a

Publish 7 = (t, s)

V computes e; = H(bj, t), c = H(b1,...,bp, t), b=T]; bf,

and checks ¢(s) Ztope

Nk W=
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Type-1 Batch Proof: Performance

v

v

v

v

Proof m = (¢,

s) has size O(1)

Generation: O(1)

— Let r be the number of modExps in ¢
— Assume that a = ), e;a; can be computed efficiently
— modExps(n) = r
Verification: O(n)
— Computing b =[], b’ requires n modExps
— Computing ¢(s) requires r modExps
— Computing b¢ requires 1 modExp
— modExps(n) =n+r+1

Remark: e, ..

., e and c are usually small (e.g., 160 bits)
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Type-2 Batch Proof

v

Consider n one-way group homomorphisms ¢; : X — Y
Let by,..., b, be publicly known, where b; = ¢;(a)
P proves knowledge of a as follows:

v

v

— V chooses ey, ..., e, uniformly at random
b= Hb?i = Hd’i(a)ei = H¢i(€i - a)

— P generates a preimage proof m = (t, s) for b = ¢.(a), where
de(x) = [, #i(ei - x) is a new one-way group homomorphism

v

V computes b = []; b7’ and verifies

v

Again, P does not need to compute b = []; b

30



Type-2 Batch Proof: Non-Interactive Version

v

Consider n one-way group homomorphisms ¢; : X — Y
Let by, ..., b, be publicly known, where b; = ¢;(a)
P proves knowledge of a as follows:

v

v

Choose w €g X uniformly at random
Compute t = ¢e(w)

Compute e; = H(b;, t) fori=1,...,n
Compute ¢ = H(by, ..., bp, t)
Computes=w-+c-a

Publish 7 = (t, s)

V computes e; = H(bj,t), b=T]; b, H(b, t), and
checks ¢e(s) Ltbe

O W
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Consider n one-way group homomorphisms ¢; : X — Y
Let by, ..., b, be publicly known, where b; = ¢;(a)

P proves knowledge of a as follows:

Choose w €g X uniformly at random

Compute e; = H(b;, t) for i=1,...,n < ¢ depend on t
Compute t = ¢e(w)

Compute ¢ = H(by, ..., bp, t)

Compute s=w+c-a

Publish 7 = (t, s)

V computes e; = H(bj,t), b=T]; b, H(b, t), and
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Type-2 Batch Proof: Non-Interactive Version

v

Consider n one-way group homomorphisms ¢; : X — Y
Let by, ..., b, be publicly known, where b; = ¢;(a)
P proves knowledge of a as follows:

v

v

Choose w €g X uniformly at random

Compute e; = H(b;) for i = 1,...,n < Is this secure?
Compute t = ¢e(w)

Compute ¢ = H(by, ..., bp, t)

Compute s=w+c-a

Publish 7 = (t, s)

V computes e; = H(bj, t), b=T]; b, H(b, t), and
checks ¢e(s) Ltbe

OO W

v



Type-2 Batch Proof: Performance

v

v

v

v

Proof m = (¢,

s) has size O(1)

Generation: O(n)

— Let ¥ be average the number of modExps in ¢;
— Computing ¢.(w) requires n - 7 modExps
— modExps(n) =n-F
Verification: O(n)
— Computing b =[], b’ requires n modExps
— Computing ¢.(s) requires n- 7 modExps
— Computing b¢ requires 1 modExp
— modExps(n)=n-(F+1)+1

Remark: e, ..

., en and c are usually small (e.g., 160 bits)
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Recapitulation

modExps(n)
small regular
exponents |exponents

Composition | Generation - n-r

Verification n n-r
Type-1 Generation - r

Verification| n+1 r
Type-2 Generation - n-r

Verification| n+1 n-t |n(r+1)+1
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Square and Multiply Algorithm (SMA)

» General idea for computing x¢ efficiently (in a semigroup)

4 ife=0
x® = { (x¢/2)2, if e is even
x - (x(e=1/2)2 " if e is odd
il 17 ife=0
| xemed 2. (xle/2)2 otherwise

> Let L = log e denote the bit length of e

» SMA uses L multiplications and L squarings (worst case)
» Total multiplications: 2L

40



Square and Multiply for Products of Powers

v

To compute a product of powers []7_; x7, SMA uses n-L
multiplications and n-L squarings

v

n — 1 multiplications are needed for the final result
Total multiplications: 2-n-L4+n—1=n-(2L+1)—1

SMA for products of power (in a commutative semigroup)

v

v

1, fee=---=e,=0

HX?[ = {H (Xfei mod 2 (XiLe,-/2J)2) , otherwise

] 1

41



Square and Multiply for Products of Powers

v

To compute a product of powers []7_; x7, SMA uses n-L
multiplications and n-L squarings

» n — 1 multiplications are needed for the final result
Total multiplications: 2-n-L+n—1=n-(2L+1) -1

SMA for products of power (in a commutative semigroup)

e L ifer=---=e,=0
HX/' T H & mod2_H(X_Lei/2J)2’

P X otherwise

v

v

1

42



Square and Multiply for Products of Powers

To compute a product of powers []7_; x77, SMA uses n-L
multiplications and n-L squarings

n — 1 multiplications are needed for the final result
Total multiplications: 2-n-L+n—1=n-(2L+1) -1

SMA for products of power (in a commutative semigroup)

1, fep=---=e,=0

=
X = 2
H ! e mod 2 lei/2] .
j 11 x; . (Hixi ) , otherwise

i

Uses n - L multiplications and L squarings
Total multiplications: (n+1)- L

43
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Prime Order Co-Domain

» For a batch proof to be sound, ¢ (resp. ¢.) must have a
prime order co-domain Y

» Otherwise, if |Y/| is composite, Y may contain low-order
sub-groups
» For example, let G, = {x1,x2} C Y be a sub-group of Y

> If we pick two integers e1, & € Z at random, then

P(x' = x3%) = E

2

» Therefore, the probability that an incorrect input b; € G, can

pass the verification is %

45



Prime Order Sub-Group of Z;

» To avoid this problem, let the co-domain of ¢ (resp. ¢¢) be a
prime order sub-group Gy C Zp, where p = k-q +1
> If we pick two integers e1, & € Z at random, then

1
P =x3) = =
q

for any distinct values x1, x> € Gq

» Therefore, batch proofs are sound for high-order sub-groups
Gq C Zy,

46



Testing for Group Membership

» Great, working with prime order co-domains G4 C Z,, seems
to work. But what if b; & G4?
» For example, let p = 2-q + 1 be a safe prime. Then x € G4
implies
= (p—x)€Zy\ Gq
- 2 =(p—x)
— x®=(p—x)¢fore>2
» Therefore, V' needs to test group membership b; € Gq4 for all
public inputs b; = ¢(a;) resp. b; = ¢;(a)
» Testing group membership in G4 C Zj, requires one modExp

47



Recapitulation: Update

modExps(n)
small regular
exponents|exponents

Composition | Generation - n-r

Verification n n-r
Type-1 Generation - r

Verification| n+1 n+r
Type-2 Generation - n-r

Verification| n+1 |n-(F+1)|n(F+2)+1
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Conclusion

\4

v

v

v

There are two types of generic batch proofs
Type-1 Proof: Common Function

— Proof size: O(1)

— Proof generation runs in O(1) time

— Verification not significantly improved
— Examples: multi-commitment, multi-encryption, etc.

Type-2 Proof: Common Preimage

— Proof size: O(1)
— Proof generation and verification not significantly improved
— Examples: multi-decryption, multi-blinding, etc.

Caution: proofs work only for prime order co-domains
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Open Quesions

v

Missing security proof for the generic proof construction

v

Dependency problem in the non-interactive Type-2 Proof

v

Missing security proof for the non-interactive version
(Fiat-Shamir, random oracle model)

\4

Implementation in UniCrypt
Useful for UniVote?

v
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