
Wikström’s Commitment-Consistent

Proof of a Shuffle

Rolf Haenni

http://e-voting.bfh.ch

Seminar, E-Voting Group, BFH

September 5th, 2012

1

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

2

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

3

Motivation

Proof of Re-Encryption Shuffle: given

1. Public key pk
2. Input encryptions u1, . . . , un
3. Output encryptions u′1, . . . , u

′
n

prove knowledge of

1. Permutation π
2. Randomizations r1, . . . , rn

such that u′i = uπ(i) · Epk(1, rπ(i))

4

Motivation

Proof of Exponentiation Shuffle: given

1. Input values u1, . . . , un
2. Output values u′1, . . . , u

′
n

3. Commitment c = C (α, s)

prove knowledge of

1. Permutation π
2. Exponent α, randomization s

such that c = C (α, s) and u′i = uαπ(i)

5

General Proof Strategy

The prover

1. Commits to a permutation matrix of π

2. Proves that this commitment contains a permutation matrix

3. Proves that this permutation has been used in the shuffle

6

References

D. Wikström.
A Commitment-Consistent Proof of a Shuffle.

ACISP’09, 14th Australasian Conference on Information Security and

Privacy, Brisbane, Australia, 2009.

B. Terelius and D. Wikström.
Proofs of Restricted Shuffles.

AFRICACRYPT’10, 3rd International Conference on Cryptology in Africa,

Stellenbosch, South Africa, 2010.

D. Wikström.
A sender verifiable mix-net and a new proof of a shuffle.

ASIACRYPT’05, 11th International Conference on the Theory and

Application of Cryptographic Techniques, Chennai, India, 2005.

7

Related Work

J. Furukawa and K. Sako.
An efficient scheme for proving a shuffle.

CRYPTO’01, 21st Annual International Cryptology Conference on

Advances in Cryptology, Santa Barbara, USA, 2001

C. A. Neff.
A verifiable secret shuffle and its application to e-voting.

CCS’01, 8th ACM Conference on Computer and Communications

Security, Philadelphia, USA, 2001.

J. Groth.
A verifiable secret shuffle of homomorphic encryptions.

Journal of Cryptology, 23(4):546–579, 2010.

8

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

9

Pedersen Commitment

I Let g , h be independently chosen generators of Gq.

I Let m ∈ Zq, then

C (m, s) = g s · hm

is a Pedersen commitment of m for s ∈R Zq is chosen
uniformly at random

I Perfectly hiding, computationally binding
I Homomorphic

Ý C (m1, s1) · C (m2, s2) = C (m1 + m2, s1 + s2)
Ý C (m, s)e = C (e ·m, e · s)

10

Generalized Pedersen Commitment

I Let g , h1, . . . , hn be independently chosen generators of Gq

I Let m = (m1, . . . ,mn) ∈ Zn
q, then

C (m, s) = g s · hm1
1 · · · h

mn
n

is a generalized Pedersen commitment of m, where s ∈R Zq is
chosen uniformly at random

I Perfectly hiding, computationally binding
I Homomorphic

Ý C (m1, s1) · C (m2, s2) = C (m1 + m2, s1 + s2)
Ý C (m, s)e = C (e ·m, e · s)

11

Non-Interactive Basic Preimage Proof

I Let (X ,+, 0) and (Y , ·, 1) be groups of finite order

I Consider a one-way group homomorphism φ : X → Y

I Let b = φ(a) be publicly known
I The prover P proves knowledge of a using the Σ-protocol:

1. Choose ω ∈R X uniformly at random
2. Compute t = φ(ω)
3. Compute c = H(b, t) mod q, for q = 2L ≤ |image(φ)|
4. Compute s = ω + c · a
5. Publish π = (t, s)

I To verify π, the verifier V computes c = H(b, t) mod q and

checks φ(s)
?
= t · bc

12

Example 1: Discrete Logarithm (Schnorr)

I Let g be a generator of Gq

I Let c = gm be a publicly known commitment of m ∈ Zq

I P proves knowledge of m using the Σ-protocol for:

a = m,

b = c ,

φ(x) = g x ,

where φ : Zq︸︷︷︸
X

→ Gq︸︷︷︸
Y

13

Example 2: Equality of Discrete Logarithms

I Let g1 and g2 be generators of Gq

I Let c1 = gm
1 and c2 = gm

2 be public commitments of m ∈ Zq

I P proves knowledge of m using the Σ-protocol for:

a = m,

b = (c1, c2),

φ(x) = (g x
1 , g

x
2),

where φ : Zq︸︷︷︸
X

→ Gq × Gq︸ ︷︷ ︸
Y

I Note that t = (t1, t2)

14

Example 3: Pedersen Commitment Proof

I Let c = C (m, s) be a publicly known commitment of m ∈ Zq

I P proves knowledge of m and s using the Σ-protocol for:

a = (m, s),

b = c,

φ(x1, x2) = C (x1, x2) = g x2hx1 ,

where φ : Zq × Zq︸ ︷︷ ︸
X

→ Gq︸︷︷︸
Y

I Note that ω = (ω1, ω2) and s = (s1, s2)

15

Example 4: Commitment Multiplication Proof

I Let c1 = C (m1, s1), c2 = C (m2, s2), and c3 = C (m3, s3) be
publicly known commitments of m1,m2,m3 ∈ Zq

I P proves knowledge of m1, m2, and m3 = m1m2 using the
Σ-protocol for:

a = (m1, s1,m2, s2, s3 −m1s2)

b = (c1, c2, c3),

φ(x1, x2, x3, x4, x5) = (C (x1, x2),C (x3, x4), g x5cx12)

where φ : Z5
q︸︷︷︸

X

→ G 3
q︸︷︷︸

Y

I Note that ω = (ω1, . . . , ω5), t = (t1, . . . , t3), s = (s1, . . . , s5)

16

Composition of Preimage Proofs

I Consider n one-way group homomorphism φi : Xi → Yi

I Let b1, . . . , bn be publicly known, where bi = φi (ai)

I P proves knowledge of a1, . . . , an using the Σ-protocol for:

a = (a1, . . . , an),

b = (b1, . . . , bn),

φ(x1, . . . , xn) = (φ1(x1), . . . , φn(xn)),

where φ : X1 × · · · × Xn︸ ︷︷ ︸
X

→ Y1 × · · · × Yn︸ ︷︷ ︸
Y

I Note that ω = (ω1, . . . , ωn), t = (t1, . . . , tn), s = (s1, . . . , sn),
which implies large proofs of size O(n)

17

Batch Preimage Proof

I Consider a single one-way group homomorphisms φ : X → Y

I Let b1, . . . , bm be publicly known, where bi = φ(ai)
I P proves knowledge of a1, . . . , an as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes b =

∏
i b

ei
i using the fast algorithm from BGR98

b =
∏
i

beii =
∏
i

φ(ai)
ei =

∏
i

φ(eiai) = φ(
∑
i

eiai)

Ý P computes basic preimage proof for b = φ(a) and a =
∑

i eiai

I Implies small proofs of size O(1)

I Important: verification requires testing b1, . . . , bm ∈ Y

18

Non-Interactive Batch Preimage Proof

I Consider a single one-way group homomorphisms φ : X → Y

I Let b1, . . . , bm be publicly known, where bi = φ(ai)
I P proves knowledge of a1, . . . , an as follows:

1. Choose ω ∈R X uniformly at random
2. Compute t = φ(ω)
3. Compute ei = H(bi , t) mod q, for q = 2L ≤ |image(φ)|
4. Compute a =

∑
i eiai and b =

∏
i b

ei
i

5. Compute c = H(b, t) mod q
6. Compute s = ω + c · a
7. Publish π = (t, s)

I To verify π, V computes ei = H(bi , t), b =
∏

i b
ei
i mod q,

and c = H(b, t) mod q, and checks bi ∈ Y and φ(s) = t · bc

19

References

U. Maurer
Unifying Zero-Knowledge Proofs of Knowledge

AFRICACRYPT’09, 2nd International Conference on Cryptology in Africa,

volume 5580 of LNCS 5580, pages 272–286, Gammarth, Tunisia, 2009.

M. Bellare, J. A. Garay, and T. Rabin
Batch verification with applications to cryptography and
checking

LATIN’98: 3rd Latin American Symposium on Theoretical Informatics,

LNCS 1380, pages 170–191, Campinas, Brazil, 1998.

K. Peng, C. Boyd, and E. Dawson
Batch zero-knowledge proof and verification and its
applications

ACM Transactions on Information and System Security, 10(2), 2007.

20

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

21

Basic Re-Encryption Proof

I Let u and u′ = u · Epk(1, r) be publicly known encryptions

I Therefore, u′ · u−1 is an encryption of 1 with randomization r

I P proves knowledge of r using the Σ-protocol for:

a = r ,

b = u′ · u−1

φ(x) = Epk(1, x),

I For ElGamal encryptions, we have φ(x) = (g x , pkx), where
where φ : Zq︸︷︷︸

X

→ Gq × Gq︸ ︷︷ ︸
Y

22

Batch Re-Encryption Proof

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known encryptions,

where u′i = ui · Epk(1, ri)
I P proves knowledge of r1, . . . , rn as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i)

ei

u′ =
∏
i

(u′i)
ei =

∏
i

ueii
∏
i

Epk(1, ri)
ei = u · Epk(1,

∑
i

ei ri)

Ý P creates basic re-encryption proof for u′·u−1 = Epk(1,
∑

i ei ri)

I Implies small proofs of size O(1)

23

Batch Re-Encryption Proof under Permutation

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known encryptions,

where u′i = uπ(i) · Epk(1, rπ(i))
I P proves knowledge of π and r1, . . . , rn as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i)

eπ(i)

u′ =
∏
i

(u′i)
eπ(i) =

∏
i

u
eπ(i)

π(i)

∏
i

Epk(1, rπ(i))
eπ(i) = u · Epk(1,

∑
i

ei ri)

Ý P creates basic re-encryption proof for u′·u−1 = Epk(1,
∑

i ei ri)

I Note that V can verify everything except u′ =
∏

i (u
′
i)
eπ(i)

24

Basic Exponentiation Proof

I Let c = C (α, s) be publicly known

I Let u and u′ = uα be publicly known values

I P proves knowledge of α and s using the Σ-protocol for:

a = (α, s),

b = (c , u′),

φ(x1, x2) = (C (x1, x2), ux1)

I Remark: since α is no longer perfectly hidden for u′ = uα, we
could use c = gα to commit to α (no randomization)

25

Batch Exponentiation Proof

I Let c = C (α, s) be publicly known

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known, for u′i = uαi

I P proves knowledge of α and s as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i)

ei

u′ =
∏
i

(u′i)
ei =

∏
i

(uαi)ei = (
∏
i

ueii)α = uα

Ý P creates basic exponentiation proof for u′ = uα and c

I Implies small proofs of size O(1)

26

Batch Exponentiation Proof u. Permutation

I Let c = C (α, s) be publicly known

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known, for u′i = uαπ(i)

I P proves knowledge of π, α, and s as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i)

eπ(i)

u′ =
∏
i

(u′i)
eπ(i) =

∏
i

(uαπ(i))
eπ(i) = (

∏
i

u
eπ(i)

π(i))α = uα

Ý P creates basic exponentiation proof for u′ = uα and c

I Note that V can verify everything except u′ =
∏

i (u
′
i)
eπ(i)

27

What Remains?

Great, batch proofs almost work under permutation for both
re-encryptions and exponentiations, but how can P prove the
correct form of

u′ =
∏
i

(u′i)
eπ(i)

without revealing any information about π?

28

Necessity of Blinding u′

I Suppose that u′ =
∏

i (u
′
i)
eπ(i) has been formed correctly

I V may then brute-force search for π, especially if n is small
I Let G be the group under consideration and {h1, . . . , hk} a

generating set of G

Ý ElGamal Re-Encryption: {(g , 1), (1, g)} for Gq × Gq

Ý Exponentiation: {g} for Gq

I P blinds u′ as follows:

1. Choose random exponents t = (t1, . . . , tk) ∈ Zk
q

2. Let b =
∏

i h
ti
i be the blinding factor

3. Compute u′′ = b · u′ =
∏

i h
ti
i

∏
i (u
′
i)

eπ(i)

29

Blinded Batch Re-Encryption Proof

I Compute (e1, . . . , en) = PRG (z) for seed z

I Compute u =
∏

i u
ei
i

I Let b = (g , 1)t1 ·(1, g)t2 = (g t1 , g t2) for (t1, t2) ∈R Z2
q

I Compute u′′ = (g t1 , g t2) ·
∏

i (u
′
i)
eπ(i)

I Create basic re-encryption proof for

u′′ · u−1 = (g t1 , g t2) · Epk(1,
∑
i

ei ri)

30

Blinded Batch Exponentiation Proof

I Compute (e1, . . . , en) = PRG (z) for seed z

I Compute u =
∏

i u
ei
i

I Let b = g t for t ∈R Zq

I Compute u′′ = g t ·
∏

i (u
′
i)
eπ(i)

I Create basic exponentiation proof for u′′ = g t · uα and c

31

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

32

Permutation Matrix

I A permutation matrix is a square 0/1-matrix with exactly one
1 in each row and each column

I Let M be a permutation matrix and x = (x1, . . . , xn), then

M · x = (xπ(1), . . . , xπ(n))

I Example: π(1) = 2, π(2) = 3, π(3) = 1

M =

0 1 0
0 0 1
1 0 0

 , x =

x1
x2
x3

 , and therfore M · x =

x2
x3
x1



33

Permutation Matrix Test

I Let M be an arbitrary square matrix over Zq

Ý mi = (mi,1, . . . ,mi,n) denotes the i-th row vector of M
Ý 〈mi , x〉 =

∑
j mij ·xj denotes the inner product of mi and x

I Theorem 1: M is a permutation matrix if and only if

1.
∏
i

〈mi , x〉 =
∏
i

xi

2. M · 1 = 1

I Counter-example: only the first condition holds

M =

(
0 −1
−1 0

)
·
(
x1
x2

)
=

(
−x2
−x1

)
, i.e.,

∏
i

〈mi , x〉 = x1 · x2

34

Committed Permutation Matrix Test (1)

I Let m̂i = (m1,i , . . . ,mn,i) denote the i-th column vector of M

I P commits column-wise to M by computing

C (M, s) = (C (m̂1, s1), . . . ,C (m̂n, sn)) = (c1, . . . , cn)

I P performs a batch proof to prove knowledge of M and s

1. V chooses random seed z
2. P computes (e1, . . . , en) = PRG (z)
3. P computes

c =
∏
i

ceii = · · · = C (e′,
∑
i

ei si), for e′ = (eπ(1), . . . , eπ(n))

4. P creates Pederson commitment proof for c = C (e′,
∑

i ei si)

35

Committed Permutation Matrix Test (2)

To prove that M is a permutation matrix, Theorem 1 need to be
demonstrated under the commitment C (M, s)

I First condition: P proves
∏

i e
′
i =

∏
i ei

1. Compute commitments c ′i = C (e′i , s
′
i) for i = 2, . . . , n

2. Compute commitments c ′′i = C (e′1 · · · e′i , s ′′i) for i = 1, . . . , n
3. Create commitment multiplication proofs for all (c ′′i−1, c

′
i , c
′′
i)

(using a batch proof for i = 2, . . . , n)
4. Create Pedersen commitment proof for c ′′n = C (

∏
i ei , s

′′
n)

I Second condition: P proves M · 1 = 1

1. Compute d =
∏

i ci = · · · = C (1,
∑

i si)
2. Create Pedersen commitment proof for d = C (1,

∑
i si)

36

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

37

Recapitulation: Re-Encryption Shuffle (1)

I Common input: u1, . . . , un, u
′
1, . . . , u

′
n, (c1, . . . , cn) = C (M, s)

I Private input: π, r1, . . . , rn, s = (s1, . . . , sn)

I V chooses random seed z
I P computes the following:

1. (e1, . . . , en) = PRG (z)
2. u =

∏
i u

ei
i

3. u′′ = (g t1 , g t2) ·
∏

i (u
′
i)

eπ(i) for t1, t2 ∈R Zq

4. c =
∏

i c
ei
i

5. c ′i = C (e′i , s
′
i) for s ′i ∈R Zq and i = 2, . . . , n

6. c ′′i = C (e′1 · · · e′i , s ′′i) for s ′i ∈R Zq and i = 1, . . . , n
7. d =

∏
i ci

38

Recapitulation: Re-Encryption Shuffle (2)

I P creates the following composition of preimage proofs:

1. Blinded re-encryption: u′′ · u−1 = (g t1 , g t2) · Epk(1,
∑

i ei ri)
2. Generalized Pederson commitment: c = C (e′,

∑
i ei si)

3. Commitment multiplications: c ′′i−1, c
′
i , c
′′
i (using a batch proof

for i = 2, . . . , n)
4. Pedersen commitment: c ′′n = C (

∏
i ei , s

′′
n)

5. Generalized Pedersen commitment: d = C (1,
∑

i si)

I Note that if n is given, everything except u, u′′, and the
corresponding proof can be pre-computed in advance (offline)

39

Recapitulation: Exponentiation Shuffle (1)

I Common input:
u1, . . . , un, u

′
1, . . . , u

′
n, c , (c1, . . . , cn) = C (M, s)

I Private input: π, α, s, s = (s1, . . . , sn)

I V chooses random seed z
I P computes the following:

1. (e1, . . . , en) = PRG (z)
2. u =

∏
i u

ei
i

3. u′′ = g t ·
∏

i (u
′
i)

eπ(i) t ∈R Zq

4. c =
∏

i c
ei
i

5. c ′i = C (e′i , s
′
i) for s ′i ∈R Zq, i = 2, . . . , n

6. c ′′i = C (e′1 · · · e′i , s ′′i) for s ′i ∈R Zq, i = 1, . . . , n
7. d =

∏
i ci

40

Recapitulation: Exponentiation Shuffle (2)

I P creates the following composition of preimage proofs:

1. Pedersen commitment: c = C (α, s)
2. Generalized Pederson commitment: ci = C (m̂i , si) (using

batch proof for j = 1, . . . , n)
3. Blinded exponentiation: u′′ = g t · uα
4. Generalized Pederson commitment: c = C (e′,

∑
i ei si)

5. Commitment multiplications: c ′′i−1, c
′
i , c
′′
i

(batch proof for i = 2, . . . , n)
6. Pedersen commitment: c ′′n = C (

∏
i ei , s

′′
n)

7. Generalized Pedersen commitment: d = C (1,
∑

i si)

I Note that if n is given, everything except u, u′′, and the
corresponding proof can be pre-computed in advance (offline)

41

Open Quesions

I Can we make the proof non-interactive?

Ý Using non-interactive batch proofs (Fiat-Shamir)
Ý How secure is this?
Ý Does it affect pre-computations?

I Can we skip some commitments?

Ý The paper contains a commitment to t, but this seems not to
be necessary (already skipped)

Ý In the chained commitment multiplication proof, the output of
one proof is one of the inputs of the next proof

42

Conclusion

I The proof is a composition of several basic preimage and
batch preimage proofs

I The size of the proof is O(n)
I A large portion of the proof can be computed offline

Ý Ok, if n is known in advance
Ý If n is unknown, the pre-computation can be done for an upper

bound N ≥ n, and when the input data arrives, it is “filled up”
with trivial values

I The proof can be generalized to incorporate:

Ý Restrictions on π (e.g., that π is a rotation)
Ý Any “shuffle-friendly map” (re-encryptions, exponentiations,

partial decryptions, or combinations thereof)

I Great job, Douglas!!!

43

	Introduction
	Review of Cryptographic Primitives
	Batch Re-Encryption and Exponentiation Proofs
	Proof of Knowledge of Permutation Matrix
	Conclusion

