Wikström's Commitment-Consistent

Proof of a Shuffle

Rolf Haenni
http://e-voting.bfh.ch

Seminar, E-Voting Group, BFH

September 5th, 2012

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

Motivation

Proof of Re-Encryption Shuffle: given

1. Public key pk
2. Input encryptions u_{1}, \ldots, u_{n}
3. Output encryptions $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$
prove knowledge of
4. Permutation π
5. Randomizations r_{1}, \ldots, r_{n}
such that $u_{i}^{\prime}=u_{\pi(i)} \cdot E_{p k}\left(1, r_{\pi(i)}\right)$

Motivation

Proof of Exponentiation Shuffle: given

1. Input values u_{1}, \ldots, u_{n}
2. Output values $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$
3. Commitment $c=C(\alpha, s)$
prove knowledge of
4. Permutation π
5. Exponent α, randomization s
such that $c=C(\alpha, s)$ and $u_{i}^{\prime}=u_{\pi(i)}^{\alpha}$

General Proof Strategy

The prover

1. Commits to a permutation matrix of π
2. Proves that this commitment contains a permutation matrix
3. Proves that this permutation has been used in the shuffle

References

D. Wikström.

A Commitment-Consistent Proof of a Shuffle.
ACISP'09, 14th Australasian Conference on Information Security and
Privacy, Brisbane, Australia, 2009.
圊 B. Terelius and D. Wikström.
Proofs of Restricted Shuffles.
AFRICACRYPT'10, 3rd International Conference on Cryptology in Africa,
Stellenbosch, South Africa, 2010.
囯 D. Wikström.
A sender verifiable mix-net and a new proof of a shuffle.
ASIACRYPT'05, 11th International Conference on the Theory and Application of Cryptographic Techniques, Chennai, India, 2005.

Related Work

I J. Furukawa and K. Sako.
An efficient scheme for proving a shuffle.
CRYPTO'01, 21st Annual International Cryptology Conference on
Advances in Cryptology, Santa Barbara, USA, 2001
C. A. Neff.

A verifiable secret shuffle and its application to e-voting.
CCS'01, 8th ACM Conference on Computer and Communications
Security, Philadelphia, USA, 2001.
有 J. Groth.
A verifiable secret shuffle of homomorphic encryptions.
Journal of Cryptology, 23(4):546-579, 2010.

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Pedersen Commitment

- Let g, h be independently chosen generators of G_{q}.
- Let $m \in \mathbb{Z}_{q}$, then

$$
C(m, s)=g^{s} \cdot h^{m}
$$

is a Pedersen commitment of m for $s \in_{R} \mathbb{Z}_{q}$ is chosen uniformly at random

- Perfectly hiding, computationally binding
- Homomorphic

$$
\begin{aligned}
& \rightarrow C\left(m_{1}, s_{1}\right) \cdot C\left(m_{2}, s_{2}\right)=C\left(m_{1}+m_{2}, s_{1}+s_{2}\right) \\
& \rightarrow C(m, s)^{e}=C(e \cdot m, e \cdot s)
\end{aligned}
$$

Generalized Pedersen Commitment

- Let g, h_{1}, \ldots, h_{n} be independently chosen generators of G_{q}
- Let $\bar{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{q}^{n}$, then

$$
C(\bar{m}, s)=g^{s} \cdot h_{1}^{m_{1}} \cdots h_{n}^{m_{n}}
$$

is a generalized Pedersen commitment of \bar{m}, where $s \in_{R} \mathbb{Z}_{q}$ is chosen uniformly at random

- Perfectly hiding, computationally binding
- Homomorphic

$$
\begin{aligned}
& \rightarrow C\left(\bar{m}_{1}, s_{1}\right) \cdot C\left(\bar{m}_{2}, s_{2}\right)=C\left(\bar{m}_{1}+\bar{m}_{2}, s_{1}+s_{2}\right) \\
& \rightarrow C(\bar{m}, s)^{e}=C(e \cdot \bar{m}, e \cdot s)
\end{aligned}
$$

Non-Interactive Basic Preimage Proof

- Let $(X,+, 0)$ and $(Y, \cdot, 1)$ be groups of finite order
- Consider a one-way group homomorphism $\phi: X \rightarrow Y$
- Let $b=\phi(a)$ be publicly known
- The prover P proves knowledge of a using the \sum-protocol:

1. Choose $\omega \in_{R} X$ uniformly at random
2. Compute $t=\phi(\omega)$
3. Compute $c=H(b, t) \bmod q$, for $q=2^{L} \leq|\operatorname{image}(\phi)|$
4. Compute $s=\omega+c \cdot a$
5. Publish $\pi=(t, s)$

- To verify π, the verifier V computes $c=H(b, t) \bmod q$ and checks $\phi(s) \stackrel{?}{=} t \cdot b^{c}$

Example 1: Discrete Logarithm (Schnorr)

- Let g be a generator of G_{q}
- Let $c=g^{m}$ be a publicly known commitment of $m \in \mathbb{Z}_{q}$
- P proves knowledge of m using the \sum-protocol for:

$$
\begin{aligned}
& a=m, \\
& b=c, \\
& \phi(x)=g^{x},
\end{aligned}
$$

where $\phi: \underbrace{\mathbb{Z}_{q}}_{X} \rightarrow \underbrace{G_{q}}_{Y}$

Example 2: Equality of Discrete Logarithms

- Let g_{1} and g_{2} be generators of G_{q}
- Let $c_{1}=g_{1}^{m}$ and $c_{2}=g_{2}^{m}$ be public commitments of $m \in \mathbb{Z}_{q}$
- P proves knowledge of m using the Σ-protocol for:

$$
\begin{aligned}
& a=m, \\
& b=\left(c_{1}, c_{2}\right), \\
& \phi(x)=\left(g_{1}^{x}, g_{2}^{x}\right),
\end{aligned}
$$

where $\phi: \underbrace{\mathbb{Z}_{q}}_{X} \rightarrow \underbrace{G_{q} \times G_{q}}_{Y}$

- Note that $t=\left(t_{1}, t_{2}\right)$

Example 3: Pedersen Commitment Proof

- Let $c=C(m, s)$ be a publicly known commitment of $m \in \mathbb{Z}_{q}$
- P proves knowledge of m and s using the Σ-protocol for:

$$
\begin{aligned}
& a=(m, s) \\
& b=c \\
& \phi\left(x_{1}, x_{2}\right)=C\left(x_{1}, x_{2}\right)=g^{x_{2}} h^{x_{1}}
\end{aligned}
$$

where $\phi: \underbrace{\mathbb{Z}_{q} \times \mathbb{Z}_{q}}_{X} \rightarrow \underbrace{G_{q}}_{Y}$

- Note that $\omega=\left(\omega_{1}, \omega_{2}\right)$ and $s=\left(s_{1}, s_{2}\right)$

Example 4: Commitment Multiplication Proof

- Let $c_{1}=C\left(m_{1}, s_{1}\right), c_{2}=C\left(m_{2}, s_{2}\right)$, and $c_{3}=C\left(m_{3}, s_{3}\right)$ be publicly known commitments of $m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{q}$
- P proves knowledge of m_{1}, m_{2}, and $m_{3}=m_{1} m_{2}$ using the \sum-protocol for:

$$
\begin{aligned}
& a=\left(m_{1}, s_{1}, m_{2}, s_{2}, s_{3}-m_{1} s_{2}\right) \\
& b=\left(c_{1}, c_{2}, c_{3}\right) \\
& \phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(C\left(x_{1}, x_{2}\right), C\left(x_{3}, x_{4}\right), g^{x_{5}} c_{2}^{x_{1}}\right)
\end{aligned}
$$

where $\phi: \underbrace{\mathbb{Z}_{q}^{5}}_{X} \rightarrow \underbrace{G_{q}^{3}}_{Y}$

- Note that $\omega=\left(\omega_{1}, \ldots, \omega_{5}\right), t=\left(t_{1}, \ldots, t_{3}\right), s=\left(s_{1}, \ldots, s_{5}\right)$

Composition of Preimage Proofs

- Consider n one-way group homomorphism $\phi_{i}: X_{i} \rightarrow Y_{i}$
- Let b_{1}, \ldots, b_{n} be publicly known, where $b_{i}=\phi_{i}\left(a_{i}\right)$
- P proves knowledge of a_{1}, \ldots, a_{n} using the \sum-protocol for:

$$
\begin{aligned}
& a=\left(a_{1}, \ldots, a_{n}\right) \\
& b=\left(b_{1}, \ldots, b_{n}\right) \\
& \phi\left(x_{1}, \ldots, x_{n}\right)=\left(\phi_{1}\left(x_{1}\right), \ldots, \phi_{n}\left(x_{n}\right)\right),
\end{aligned}
$$

where $\phi: \underbrace{X_{1} \times \cdots \times X_{n}}_{X} \rightarrow \underbrace{Y_{1} \times \cdots \times Y_{n}}_{Y}$

- Note that $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right), t=\left(t_{1}, \ldots, t_{n}\right), s=\left(s_{1}, \ldots, s_{n}\right)$, which implies large proofs of size $O(n)$

Batch Preimage Proof

- Consider a single one-way group homomorphisms $\phi: X \rightarrow Y$
- Let b_{1}, \ldots, b_{m} be publicly known, where $b_{i}=\phi\left(a_{i}\right)$
- P proves knowledge of a_{1}, \ldots, a_{n} as follows:
$\rightarrow V$ chooses random seed z
$\rightarrow P$ computes $\left(e_{1}, \ldots, e_{n}\right)=\operatorname{PRG}(z)$
$\rightarrow P$ computes $b=\prod_{i} b_{i}^{e_{i}}$ using the fast algorithm from BGR98

$$
b=\prod_{i} b_{i}^{e_{i}}=\prod_{i} \phi\left(a_{i}\right)^{e_{i}}=\prod_{i} \phi\left(e_{i} a_{i}\right)=\phi\left(\sum_{i} e_{i} a_{i}\right)
$$

$\rightarrow P$ computes basic preimage proof for $b=\phi(a)$ and $a=\sum_{i} e_{i} a_{i}$

- Implies small proofs of size $O(1)$
- Important: verification requires testing $b_{1}, \ldots, b_{m} \in Y$

Non-Interactive Batch Preimage Proof

- Consider a single one-way group homomorphisms $\phi: X \rightarrow Y$
- Let b_{1}, \ldots, b_{m} be publicly known, where $b_{i}=\phi\left(a_{i}\right)$
- P proves knowledge of a_{1}, \ldots, a_{n} as follows:

1. Choose $\omega \in_{R} X$ uniformly at random
2. Compute $t=\phi(\omega)$
3. Compute $e_{i}=H\left(b_{i}, t\right) \bmod q$, for $q=2^{L} \leq|\operatorname{image}(\phi)|$
4. Compute $a=\sum_{i} e_{i} a_{i}$ and $b=\prod_{i} b_{i}^{e_{i}}$
5. Compute $c=H(b, t) \bmod q$
6. Compute $s=\omega+c \cdot a$
7. Publish $\pi=(t, s)$

- To verify π, V computes $e_{i}=H\left(b_{i}, t\right), b=\prod_{i} b_{i}^{e_{i}} \bmod q$, and $c=H(b, t) \bmod q$, and checks $b_{i} \in Y$ and $\phi(s)=t \cdot b^{c}$

References

國 U. Maurer
Unifying Zero-Knowledge Proofs of Knowledge
AFRICACRYPT'09, 2nd International Conference on Cryptology in Africa, volume 5580 of LNCS 5580, pages 272-286, Gammarth, Tunisia, 2009.
E- M. Bellare, J. A. Garay, and T. Rabin
Batch verification with applications to cryptography and checking
LATIN'98: 3rd Latin American Symposium on Theoretical Informatics,
LNCS 1380, pages 170-191, Campinas, Brazil, 1998.
囦 K. Peng, C. Boyd, and E. Dawson
Batch zero-knowledge proof and verification and its applications

ACM Transactions on Information and System Security, 10(2), 2007.

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Basic Re-Encryption Proof

- Let u and $u^{\prime}=u \cdot E_{p k}(1, r)$ be publicly known encryptions
- Therefore, $u^{\prime} \cdot u^{-1}$ is an encryption of 1 with randomization r
- P proves knowledge of r using the \sum-protocol for:

$$
\begin{aligned}
& a=r \\
& b=u^{\prime} \cdot u^{-1} \\
& \phi(x)=E_{p k}(1, x),
\end{aligned}
$$

- For ElGamal encryptions, we have $\phi(x)=\left(g^{x}, p k^{x}\right)$, where where $\phi: \underbrace{\mathbb{Z}_{q}}_{X} \rightarrow \underbrace{G_{q} \times G_{q}}_{Y}$

Batch Re-Encryption Proof

- Let u_{1}, \ldots, u_{n} and $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ be publicly known encryptions, where $u_{i}^{\prime}=u_{i} \cdot E_{p k}\left(1, r_{i}\right)$
- P proves knowledge of r_{1}, \ldots, r_{n} as follows:
$\rightarrow V$ chooses random seed z
$\rightarrow P$ computes $\left(e_{1}, \ldots, e_{n}\right)=P R G(z)$
$\rightarrow P$ computes $u=\prod_{i} u_{i}^{e_{i}}$ and $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{i}}$

$$
u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{i}}=\prod_{i} u_{i}^{e_{i}} \prod_{i} E_{p k}\left(1, r_{i}\right)^{e_{i}}=u \cdot E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)
$$

$\rightarrow P$ creates basic re-encryption proof for $u^{\prime} \cdot u^{-1}=E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)$

- Implies small proofs of size $O(1)$

Batch Re-Encryption Proof under Permutation

- Let u_{1}, \ldots, u_{n} and $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ be publicly known encryptions, where $u_{i}^{\prime}=u_{\pi(i)} \cdot E_{p k}\left(1, r_{\pi(i)}\right)$
- P proves knowledge of π and r_{1}, \ldots, r_{n} as follows:
$\rightarrow V$ chooses random seed z
$\rightarrow P$ computes $\left(e_{1}, \ldots, e_{n}\right)=P R G(z)$
$\rightarrow P$ computes $u=\prod_{i} u_{i}^{e_{i}}$ and $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$

$$
u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}=\prod_{i} u_{\pi(i)}^{e_{\pi(i)}} \prod_{i} E_{p k}\left(1, r_{\pi(i)}\right)^{e_{\pi(i)}}=u \cdot E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)
$$

$\rightarrow P$ creates basic re-encryption proof for $u^{\prime} \cdot u^{-1}=E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)$

- Note that V can verify everything except $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$

Basic Exponentiation Proof

- Let $c=C(\alpha, s)$ be publicly known
- Let u and $u^{\prime}=u^{\alpha}$ be publicly known values
- P proves knowledge of α and s using the Σ-protocol for:

$$
\begin{aligned}
& a=(\alpha, s), \\
& b=\left(c, u^{\prime}\right), \\
& \phi\left(x_{1}, x_{2}\right)=\left(C\left(x_{1}, x_{2}\right), u^{x_{1}}\right)
\end{aligned}
$$

- Remark: since α is no longer perfectly hidden for $u^{\prime}=u^{\alpha}$, we could use $c=g^{\alpha}$ to commit to α (no randomization)

Batch Exponentiation Proof

- Let $c=C(\alpha, s)$ be publicly known
- Let u_{1}, \ldots, u_{n} and $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ be publicly known, for $u_{i}^{\prime}=u_{i}^{\alpha}$
- P proves knowledge of α and s as follows:
$\rightarrow V$ chooses random seed z
$\rightarrow P$ computes $\left(e_{1}, \ldots, e_{n}\right)=\operatorname{PRG}(z)$
$\rightarrow P$ computes $u=\prod_{i} u_{i}^{e_{i}}$ and $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{i}}$

$$
u^{\prime}=\prod\left(u_{i}^{\prime}\right)^{e_{i}}=\prod\left(u_{i}^{\alpha}\right)^{e_{i}}=\left(\prod u_{i}^{e_{i}}\right)^{\alpha}=u^{\alpha}
$$

$\rightarrow P$ creates basic exponentiation proof for $u^{\prime}=u^{\alpha}$ and c

- Implies small proofs of size $O(1)$

Batch Exponentiation Proof u. Permutation

- Let $c=C(\alpha, s)$ be publicly known
- Let u_{1}, \ldots, u_{n} and $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ be publicly known, for $u_{i}^{\prime}=u_{\pi(i)}^{\alpha}$
- P proves knowledge of π, α, and s as follows:
$\rightarrow V$ chooses random seed z
$\rightarrow P$ computes $\left(e_{1}, \ldots, e_{n}\right)=\operatorname{PRG}(z)$
$\rightarrow P$ computes $u=\prod_{i} u_{i}^{e_{i}}$ and $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$

$$
u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}=\prod_{i}\left(u_{\pi(i)}^{\alpha}\right)^{e_{\pi(i)}}=\left(\prod_{i} u_{\pi(i)}^{e_{\pi(i)}}\right)^{\alpha}=u^{\alpha}
$$

$\rightarrow P$ creates basic exponentiation proof for $u^{\prime}=u^{\alpha}$ and c

- Note that V can verify everything except $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$

What Remains?

Great, batch proofs almost work under permutation for both re-encryptions and exponentiations, but how can P prove the correct form of

$$
u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}
$$

without revealing any information about π ?

Necessity of Blinding u^{\prime}

- Suppose that $u^{\prime}=\prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$ has been formed correctly
- V may then brute-force search for π, especially if n is small
- Let G be the group under consideration and $\left\{h_{1}, \ldots, h_{k}\right\}$ a generating set of G
\rightarrow ElGamal Re-Encryption: $\{(g, 1),(1, g)\}$ for $G_{q} \times G_{q}$
\rightarrow Exponentiation: $\{g\}$ for G_{q}
- P blinds u^{\prime} as follows:

1. Choose random exponents $\bar{t}=\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{Z}_{q}^{k}$
2. Let $b=\prod_{i} h_{i}^{t_{i}}$ be the blinding factor
3. Compute $u^{\prime \prime}=b \cdot u^{\prime}=\prod_{i} h_{i}^{t_{i}} \prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$

Blinded Batch Re-Encryption Proof

- Compute $\left(e_{1}, \ldots, e_{n}\right)=P R G(z)$ for seed z
- Compute $u=\prod_{i} u_{i}^{e_{i}}$
- Let $b=(g, 1)^{t_{1}} \cdot(1, g)^{t_{2}}=\left(g^{t_{1}}, g^{t_{2}}\right)$ for $\left(t_{1}, t_{2}\right) \in_{R} \mathbb{Z}_{q}^{2}$
- Compute $u^{\prime \prime}=\left(g^{t_{1}}, g^{t_{2}}\right) \cdot \prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$
- Create basic re-encryption proof for

$$
u^{\prime \prime} \cdot u^{-1}=\left(g^{t_{1}}, g^{t_{2}}\right) \cdot E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)
$$

Blinded Batch Exponentiation Proof

- Compute $\left(e_{1}, \ldots, e_{n}\right)=\operatorname{PRG}(z)$ for seed z
- Compute $u=\prod_{i} u_{i}^{e_{i}}$
- Let $b=g^{t}$ for $t \in_{R} \mathbb{Z}_{q}$
- Compute $u^{\prime \prime}=g^{t} \cdot \prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$
- Create basic exponentiation proof for $u^{\prime \prime}=g^{t} \cdot u^{\alpha}$ and c

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Permutation Matrix

- A permutation matrix is a square 0/1-matrix with exactly one 1 in each row and each column
- Let M be a permutation matrix and $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
M \cdot \bar{x}=\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

- Example: $\pi(1)=2, \pi(2)=3, \pi(3)=1$

$$
M=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \bar{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text {, and therfore } M \cdot \bar{x}=\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right)
$$

Permutation Matrix Test

- Let M be an arbitrary square matrix over \mathbb{Z}_{q}
$\rightarrow \bar{m}_{i}=\left(m_{i, 1}, \ldots, m_{i, n}\right)$ denotes the i-th row vector of M
$\rightarrow\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\sum_{j} m_{i j} \cdot x_{j}$ denotes the inner product of \bar{m}_{i} and \bar{x}
- Theorem 1: M is a permutation matrix if and only if

$$
\begin{aligned}
& \text { 1. } \prod_{i}\left\langle\bar{m}_{i}, \bar{x}\right\rangle=\prod_{i} x_{i} \\
& \text { 2. } M \cdot \overline{1}=\overline{1}
\end{aligned}
$$

- Counter-example: only the first condition holds

$$
M=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{-x_{1}} \text {, i.e., } \prod_{i}\left\langle\bar{m}_{i}, \bar{x}\right\rangle=x_{1} \cdot x_{2}
$$

Committed Permutation Matrix Test (1)

- Let $\widehat{m}_{i}=\left(m_{1, i}, \ldots, m_{n, i}\right)$ denote the i-th column vector of M
- P commits column-wise to M by computing

$$
C(M, \bar{s})=\left(C\left(\widehat{m}_{1}, s_{1}\right), \ldots, C\left(\widehat{m}_{n}, s_{n}\right)\right)=\left(c_{1}, \ldots, c_{n}\right)
$$

- P performs a batch proof to prove knowledge of M and \bar{s}

1. V chooses random seed z
2. P computes $\left(e_{1}, \ldots, e_{n}\right)=\operatorname{PRG}(z)$
3. P computes

$$
c=\prod_{i} c_{i}^{e_{i}}=\cdots=C\left(\bar{e}^{\prime}, \sum_{i} e_{i} s_{i}\right), \text { for } \bar{e}^{\prime}=\left(e_{\pi(1)}, \ldots, e_{\pi(n)}\right)
$$

4. P creates Pederson commitment proof for $c=C\left(\bar{e}^{\prime}, \sum_{i} e_{i} s_{i}\right)$

Committed Permutation Matrix Test (2)

To prove that M is a permutation matrix, Theorem 1 need to be demonstrated under the commitment $C(M, \bar{s})$

- First condition: P proves $\prod_{i} e_{i}^{\prime}=\prod_{i} e_{i}$

1. Compute commitments $c_{i}^{\prime}=C\left(e_{i}^{\prime}, s_{i}^{\prime}\right)$ for $i=2, \ldots, n$
2. Compute commitments $c_{i}^{\prime \prime}=C\left(e_{1}^{\prime} \cdots e_{i}^{\prime}, s_{i}^{\prime \prime}\right)$ for $i=1, \ldots, n$
3. Create commitment multiplication proofs for all ($\left.c_{i-1}^{\prime \prime}, c_{i}^{\prime}, c_{i}^{\prime \prime}\right)$ (using a batch proof for $i=2, \ldots, n$)
4. Create Pedersen commitment proof for $c_{n}^{\prime \prime}=C\left(\prod_{i} e_{i}, s_{n}^{\prime \prime}\right)$

- Second condition: P proves $M \cdot \overline{1}=\overline{1}$

1. Compute $d=\prod_{i} c_{i}=\cdots=C\left(\overline{1}, \sum_{i} s_{i}\right)$
2. Create Pedersen commitment proof for $d=C\left(\overline{1}, \sum_{i} s_{i}\right)$

Outline

Introduction

Review of Cryptographic Primitives

Batch Re-Encryption and Exponentiation Proofs

Proof of Knowledge of Permutation Matrix

Conclusion

Recapitulation: Re-Encryption Shuffle (1)

- Common input: $u_{1}, \ldots, u_{n}, u_{1}^{\prime}, \ldots, u_{n}^{\prime},\left(c_{1}, \ldots, c_{n}\right)=C(M, \bar{s})$
- Private input: $\pi, r_{1}, \ldots, r_{n}, \bar{s}=\left(s_{1}, \ldots, s_{n}\right)$
- V chooses random seed z
- P computes the following:

1. $\left(e_{1}, \ldots, e_{n}\right)=P R G(z)$
2. $u=\prod_{i} u_{i}^{e_{i}}$
3. $u^{\prime \prime}=\left(g^{t_{1}}, g^{t_{2}}\right) \cdot \prod_{i}\left(u_{i}^{\prime}\right)^{e_{\pi(i)}}$ for $t_{1}, t_{2} \in_{R} \mathbb{Z}_{q}$
4. $c=\prod_{i} c_{i}^{e_{i}}$
5. $c_{i}^{\prime}=C\left(e_{i}^{\prime}, s_{i}^{\prime}\right)$ for $s_{i}^{\prime} \in_{R} \mathbb{Z}_{q}$ and $i=2, \ldots, n$
6. $c_{i}^{\prime \prime}=C\left(e_{1}^{\prime} \cdots e_{i}^{\prime}, s_{i}^{\prime \prime}\right)$ for $s_{i}^{\prime} \in_{R} \mathbb{Z}_{q}$ and $i=1, \ldots, n$
7. $d=\prod_{i} c_{i}$

Recapitulation: Re-Encryption Shuffle (2)

- P creates the following composition of preimage proofs:

1. Blinded re-encryption: $u^{\prime \prime} \cdot u^{-1}=\left(g^{t_{1}}, g^{t_{2}}\right) \cdot E_{p k}\left(1, \sum_{i} e_{i} r_{i}\right)$
2. Generalized Pederson commitment: $c=C\left(\bar{e}^{\prime}, \sum_{i} e_{i} s_{i}\right)$
3. Commitment multiplications: $c_{i-1}^{\prime \prime}, c_{i}^{\prime}, c_{i}^{\prime \prime}$ (using a batch proof for $i=2, \ldots, n$)
4. Pedersen commitment: $c_{n}^{\prime \prime}=C\left(\prod_{i} e_{i}, s_{n}^{\prime \prime}\right)$
5. Generalized Pedersen commitment: $d=C\left(\overline{1}, \sum_{i} s_{i}\right)$

- Note that if n is given, everything except $u, u^{\prime \prime}$, and the corresponding proof can be pre-computed in advance (offline)

Recapitulation: Exponentiation Shuffle (1)

- Common input: $u_{1}, \ldots, u_{n}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}, c,\left(c_{1}, \ldots, c_{n}\right)=C(M, \bar{s})$
- Private input: $\pi, \alpha, s, \bar{s}=\left(s_{1}, \ldots, s_{n}\right)$
- V chooses random seed z
- P computes the following:

$$
\begin{aligned}
& \text { 1. }\left(e_{1}, \ldots, e_{n}\right)=P R G(z) \\
& \text { 2. } u=\prod_{i} u_{i}^{e_{i}} \\
& \text { 3. } u^{\prime \prime}=g^{t} \cdot \prod_{i}\left(u_{i}^{\prime} e_{\pi(i)} t \in_{R} \mathbb{Z}_{q}\right. \\
& \text { 4. } c=\prod_{i} c_{i}^{e_{i}} \\
& \text { 5. } c_{i}^{\prime}=C\left(e_{i}^{\prime}, s_{i}^{\prime}\right) \text { for } s_{i}^{\prime} \in R \mathbb{Z}_{q}, i=2, \ldots, n \\
& \text { 6. } c_{i}^{\prime \prime}=C\left(e_{1}^{\prime} \cdots e_{i}^{\prime}, s_{i}^{\prime \prime}\right) \text { for } s_{i}^{\prime} \in R \mathbb{Z}_{q}, i=1, \ldots, n \\
& \text { 7. } d=\prod_{i} c_{i}
\end{aligned}
$$

Recapitulation: Exponentiation Shuffle (2)

- P creates the following composition of preimage proofs:

1. Pedersen commitment: $\boldsymbol{c}=C(\alpha, s)$
2. Generalized Pederson commitment: $c_{i}=C\left(\widehat{m}_{i}, s_{i}\right)$ (using batch proof for $j=1, \ldots, n$)
3. Blinded exponentiation: $u^{\prime \prime}=g^{t} \cdot u^{\alpha}$
4. Generalized Pederson commitment: $c=C\left(\bar{e}^{\prime}, \sum_{i} e_{i} s_{i}\right)$
5. Commitment multiplications: $c_{i-1}^{\prime \prime}, c_{i}^{\prime}, c_{i}^{\prime \prime}$ (batch proof for $i=2, \ldots, n$)
6. Pedersen commitment: $c_{n}^{\prime \prime}=C\left(\prod_{i} e_{i}, s_{n}^{\prime \prime}\right)$
7. Generalized Pedersen commitment: $d=C\left(\overline{1}, \sum_{i} s_{i}\right)$

- Note that if n is given, everything except $u, u^{\prime \prime}$, and the corresponding proof can be pre-computed in advance (offline)

Open Quesions

- Can we make the proof non-interactive?
\rightarrow Using non-interactive batch proofs (Fiat-Shamir)
\rightarrow How secure is this?
\rightarrow Does it affect pre-computations?
- Can we skip some commitments?
\rightarrow The paper contains a commitment to \bar{t}, but this seems not to be necessary (already skipped)
\rightarrow In the chained commitment multiplication proof, the output of one proof is one of the inputs of the next proof

Conclusion

- The proof is a composition of several basic preimage and batch preimage proofs
- The size of the proof is $O(n)$
- A large portion of the proof can be computed offline
\rightarrow Ok, if n is known in advance
\rightarrow If n is unknown, the pre-computation can be done for an upper bound $N \geq n$, and when the input data arrives, it is "filled up" with trivial values
- The proof can be generalized to incorporate:
\rightarrow Restrictions on π (e.g., that π is a rotation)
\rightarrow Any "shuffle-friendly map" (re-encryptions, exponentiations, partial decryptions, or combinations thereof)
- Great job, Douglas!!!

