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Motivation

Proof of Re-Encryption Shuffle: given

1. Public key pk
2. Input encryptions u1, . . . , un
3. Output encryptions u′1, . . . , u

′
n

prove knowledge of

1. Permutation π
2. Randomizations r1, . . . , rn

such that u′i = uπ(i) · Epk(1, rπ(i))
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Motivation

Proof of Exponentiation Shuffle: given

1. Input values u1, . . . , un
2. Output values u′1, . . . , u

′
n

3. Commitment c = C (α, s)

prove knowledge of

1. Permutation π
2. Exponent α, randomization s

such that c = C (α, s) and u′i = uαπ(i)
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General Proof Strategy

The prover

1. Commits to a permutation matrix of π

2. Proves that this commitment contains a permutation matrix

3. Proves that this permutation has been used in the shuffle
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Pedersen Commitment

I Let g , h be independently chosen generators of Gq.

I Let m ∈ Zq, then

C (m, s) = g s · hm

is a Pedersen commitment of m for s ∈R Zq is chosen
uniformly at random

I Perfectly hiding, computationally binding
I Homomorphic

Ý C (m1, s1) · C (m2, s2) = C (m1 + m2, s1 + s2)
Ý C (m, s)e = C (e ·m, e · s)
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Generalized Pedersen Commitment

I Let g , h1, . . . , hn be independently chosen generators of Gq

I Let m = (m1, . . . ,mn) ∈ Zn
q, then

C (m, s) = g s · hm1
1 · · · h

mn
n

is a generalized Pedersen commitment of m, where s ∈R Zq is
chosen uniformly at random

I Perfectly hiding, computationally binding
I Homomorphic

Ý C (m1, s1) · C (m2, s2) = C (m1 + m2, s1 + s2)
Ý C (m, s)e = C (e ·m, e · s)
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Non-Interactive Basic Preimage Proof

I Let (X ,+, 0) and (Y , ·, 1) be groups of finite order

I Consider a one-way group homomorphism φ : X → Y

I Let b = φ(a) be publicly known
I The prover P proves knowledge of a using the Σ-protocol:

1. Choose ω ∈R X uniformly at random
2. Compute t = φ(ω)
3. Compute c = H(b, t) mod q, for q = 2L ≤ |image(φ)|
4. Compute s = ω + c · a
5. Publish π = (t, s)

I To verify π, the verifier V computes c = H(b, t) mod q and

checks φ(s)
?
= t · bc
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Example 1: Discrete Logarithm (Schnorr)

I Let g be a generator of Gq

I Let c = gm be a publicly known commitment of m ∈ Zq

I P proves knowledge of m using the Σ-protocol for:

a = m,

b = c ,

φ(x) = g x ,

where φ : Zq︸︷︷︸
X

→ Gq︸︷︷︸
Y
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Example 2: Equality of Discrete Logarithms

I Let g1 and g2 be generators of Gq

I Let c1 = gm
1 and c2 = gm

2 be public commitments of m ∈ Zq

I P proves knowledge of m using the Σ-protocol for:

a = m,

b = (c1, c2),

φ(x) = (g x
1 , g

x
2 ),

where φ : Zq︸︷︷︸
X

→ Gq × Gq︸ ︷︷ ︸
Y

I Note that t = (t1, t2)
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Example 3: Pedersen Commitment Proof

I Let c = C (m, s) be a publicly known commitment of m ∈ Zq

I P proves knowledge of m and s using the Σ-protocol for:

a = (m, s),

b = c,

φ(x1, x2) = C (x1, x2) = g x2hx1 ,

where φ : Zq × Zq︸ ︷︷ ︸
X

→ Gq︸︷︷︸
Y

I Note that ω = (ω1, ω2) and s = (s1, s2)
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Example 4: Commitment Multiplication Proof

I Let c1 = C (m1, s1), c2 = C (m2, s2), and c3 = C (m3, s3) be
publicly known commitments of m1,m2,m3 ∈ Zq

I P proves knowledge of m1, m2, and m3 = m1m2 using the
Σ-protocol for:

a = (m1, s1,m2, s2, s3 −m1s2)

b = (c1, c2, c3),

φ(x1, x2, x3, x4, x5) = (C (x1, x2),C (x3, x4), g x5cx12 )

where φ : Z5
q︸︷︷︸

X

→ G 3
q︸︷︷︸

Y

I Note that ω = (ω1, . . . , ω5), t = (t1, . . . , t3), s = (s1, . . . , s5)
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Composition of Preimage Proofs

I Consider n one-way group homomorphism φi : Xi → Yi

I Let b1, . . . , bn be publicly known, where bi = φi (ai )

I P proves knowledge of a1, . . . , an using the Σ-protocol for:

a = (a1, . . . , an),

b = (b1, . . . , bn),

φ(x1, . . . , xn) = (φ1(x1), . . . , φn(xn)),

where φ : X1 × · · · × Xn︸ ︷︷ ︸
X

→ Y1 × · · · × Yn︸ ︷︷ ︸
Y

I Note that ω = (ω1, . . . , ωn), t = (t1, . . . , tn), s = (s1, . . . , sn),
which implies large proofs of size O(n)
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Batch Preimage Proof

I Consider a single one-way group homomorphisms φ : X → Y

I Let b1, . . . , bm be publicly known, where bi = φ(ai )
I P proves knowledge of a1, . . . , an as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes b =

∏
i b

ei
i using the fast algorithm from BGR98

b =
∏
i

beii =
∏
i

φ(ai )
ei =

∏
i

φ(eiai ) = φ(
∑
i

eiai )

Ý P computes basic preimage proof for b = φ(a) and a =
∑

i eiai

I Implies small proofs of size O(1)

I Important: verification requires testing b1, . . . , bm ∈ Y
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Non-Interactive Batch Preimage Proof

I Consider a single one-way group homomorphisms φ : X → Y

I Let b1, . . . , bm be publicly known, where bi = φ(ai )
I P proves knowledge of a1, . . . , an as follows:

1. Choose ω ∈R X uniformly at random
2. Compute t = φ(ω)
3. Compute ei = H(bi , t) mod q, for q = 2L ≤ |image(φ)|
4. Compute a =

∑
i eiai and b =

∏
i b

ei
i

5. Compute c = H(b, t) mod q
6. Compute s = ω + c · a
7. Publish π = (t, s)

I To verify π, V computes ei = H(bi , t), b =
∏

i b
ei
i mod q,

and c = H(b, t) mod q, and checks bi ∈ Y and φ(s) = t · bc
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Basic Re-Encryption Proof

I Let u and u′ = u · Epk(1, r) be publicly known encryptions

I Therefore, u′ · u−1 is an encryption of 1 with randomization r

I P proves knowledge of r using the Σ-protocol for:

a = r ,

b = u′ · u−1

φ(x) = Epk(1, x),

I For ElGamal encryptions, we have φ(x) = (g x , pkx), where
where φ : Zq︸︷︷︸

X

→ Gq × Gq︸ ︷︷ ︸
Y
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Batch Re-Encryption Proof

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known encryptions,

where u′i = ui · Epk(1, ri )
I P proves knowledge of r1, . . . , rn as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i )

ei

u′ =
∏
i

(u′i )
ei =

∏
i

ueii
∏
i

Epk(1, ri )
ei = u · Epk(1,

∑
i

ei ri )

Ý P creates basic re-encryption proof for u′·u−1 = Epk(1,
∑

i ei ri )

I Implies small proofs of size O(1)
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Batch Re-Encryption Proof under Permutation

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known encryptions,

where u′i = uπ(i) · Epk(1, rπ(i))
I P proves knowledge of π and r1, . . . , rn as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i )

eπ(i)

u′ =
∏
i

(u′i )
eπ(i) =

∏
i

u
eπ(i)

π(i)

∏
i

Epk(1, rπ(i))
eπ(i) = u · Epk(1,

∑
i

ei ri )

Ý P creates basic re-encryption proof for u′·u−1 = Epk(1,
∑

i ei ri )

I Note that V can verify everything except u′ =
∏

i (u
′
i )
eπ(i)
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Basic Exponentiation Proof

I Let c = C (α, s) be publicly known

I Let u and u′ = uα be publicly known values

I P proves knowledge of α and s using the Σ-protocol for:

a = (α, s),

b = (c , u′),

φ(x1, x2) = (C (x1, x2), ux1)

I Remark: since α is no longer perfectly hidden for u′ = uα, we
could use c = gα to commit to α (no randomization)
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Batch Exponentiation Proof

I Let c = C (α, s) be publicly known

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known, for u′i = uαi

I P proves knowledge of α and s as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i )

ei

u′ =
∏
i

(u′i )
ei =

∏
i

(uαi )ei = (
∏
i

ueii )α = uα

Ý P creates basic exponentiation proof for u′ = uα and c

I Implies small proofs of size O(1)
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Batch Exponentiation Proof u. Permutation

I Let c = C (α, s) be publicly known

I Let u1, . . . , un and u′1, . . . , u
′
n be publicly known, for u′i = uαπ(i)

I P proves knowledge of π, α, and s as follows:

Ý V chooses random seed z
Ý P computes (e1, . . . , en) = PRG (z)
Ý P computes u =

∏
i u

ei
i and u′ =

∏
i (u
′
i )

eπ(i)

u′ =
∏
i

(u′i )
eπ(i) =

∏
i

(uαπ(i))
eπ(i) = (

∏
i

u
eπ(i)

π(i) )α = uα

Ý P creates basic exponentiation proof for u′ = uα and c

I Note that V can verify everything except u′ =
∏

i (u
′
i )
eπ(i)
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What Remains?

Great, batch proofs almost work under permutation for both
re-encryptions and exponentiations, but how can P prove the
correct form of

u′ =
∏
i

(u′i )
eπ(i)

without revealing any information about π?
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Necessity of Blinding u′

I Suppose that u′ =
∏

i (u
′
i )
eπ(i) has been formed correctly

I V may then brute-force search for π, especially if n is small
I Let G be the group under consideration and {h1, . . . , hk} a

generating set of G

Ý ElGamal Re-Encryption: {(g , 1), (1, g)} for Gq × Gq

Ý Exponentiation: {g} for Gq

I P blinds u′ as follows:

1. Choose random exponents t = (t1, . . . , tk) ∈ Zk
q

2. Let b =
∏

i h
ti
i be the blinding factor

3. Compute u′′ = b · u′ =
∏

i h
ti
i

∏
i (u
′
i )

eπ(i)
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Blinded Batch Re-Encryption Proof

I Compute (e1, . . . , en) = PRG (z) for seed z

I Compute u =
∏

i u
ei
i

I Let b = (g , 1)t1 ·(1, g)t2 = (g t1 , g t2) for (t1, t2) ∈R Z2
q

I Compute u′′ = (g t1 , g t2) ·
∏

i (u
′
i )
eπ(i)

I Create basic re-encryption proof for

u′′ · u−1 = (g t1 , g t2) · Epk(1,
∑
i

ei ri )
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Blinded Batch Exponentiation Proof

I Compute (e1, . . . , en) = PRG (z) for seed z

I Compute u =
∏

i u
ei
i

I Let b = g t for t ∈R Zq

I Compute u′′ = g t ·
∏

i (u
′
i )
eπ(i)

I Create basic exponentiation proof for u′′ = g t · uα and c
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Permutation Matrix

I A permutation matrix is a square 0/1-matrix with exactly one
1 in each row and each column

I Let M be a permutation matrix and x = (x1, . . . , xn), then

M · x = (xπ(1), . . . , xπ(n))

I Example: π(1) = 2, π(2) = 3, π(3) = 1

M =

0 1 0
0 0 1
1 0 0

 , x =

x1
x2
x3

 , and therfore M · x =

x2
x3
x1



33



Permutation Matrix Test

I Let M be an arbitrary square matrix over Zq

Ý mi = (mi,1, . . . ,mi,n) denotes the i-th row vector of M
Ý 〈mi , x〉 =

∑
j mij ·xj denotes the inner product of mi and x

I Theorem 1: M is a permutation matrix if and only if

1.
∏
i

〈mi , x〉 =
∏
i

xi

2. M · 1 = 1

I Counter-example: only the first condition holds

M =

(
0 −1
−1 0

)
·
(
x1
x2

)
=

(
−x2
−x1

)
, i.e.,

∏
i

〈mi , x〉 = x1 · x2
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Committed Permutation Matrix Test (1)

I Let m̂i = (m1,i , . . . ,mn,i ) denote the i-th column vector of M

I P commits column-wise to M by computing

C (M, s) = (C (m̂1, s1), . . . ,C (m̂n, sn)) = (c1, . . . , cn)

I P performs a batch proof to prove knowledge of M and s

1. V chooses random seed z
2. P computes (e1, . . . , en) = PRG (z)
3. P computes

c =
∏
i

ceii = · · · = C (e′,
∑
i

ei si ), for e′ = (eπ(1), . . . , eπ(n))

4. P creates Pederson commitment proof for c = C (e′,
∑

i ei si )
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Committed Permutation Matrix Test (2)

To prove that M is a permutation matrix, Theorem 1 need to be
demonstrated under the commitment C (M, s)

I First condition: P proves
∏

i e
′
i =

∏
i ei

1. Compute commitments c ′i = C (e′i , s
′
i ) for i = 2, . . . , n

2. Compute commitments c ′′i = C (e′1 · · · e′i , s ′′i ) for i = 1, . . . , n
3. Create commitment multiplication proofs for all (c ′′i−1, c

′
i , c
′′
i )

(using a batch proof for i = 2, . . . , n)
4. Create Pedersen commitment proof for c ′′n = C (

∏
i ei , s

′′
n )

I Second condition: P proves M · 1 = 1

1. Compute d =
∏

i ci = · · · = C (1,
∑

i si )
2. Create Pedersen commitment proof for d = C (1,

∑
i si )
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Recapitulation: Re-Encryption Shuffle (1)

I Common input: u1, . . . , un, u
′
1, . . . , u

′
n, (c1, . . . , cn) = C (M, s)

I Private input: π, r1, . . . , rn, s = (s1, . . . , sn)

I V chooses random seed z
I P computes the following:

1. (e1, . . . , en) = PRG (z)
2. u =

∏
i u

ei
i

3. u′′ = (g t1 , g t2) ·
∏

i (u
′
i )

eπ(i) for t1, t2 ∈R Zq

4. c =
∏

i c
ei
i

5. c ′i = C (e′i , s
′
i ) for s ′i ∈R Zq and i = 2, . . . , n

6. c ′′i = C (e′1 · · · e′i , s ′′i ) for s ′i ∈R Zq and i = 1, . . . , n
7. d =

∏
i ci
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Recapitulation: Re-Encryption Shuffle (2)

I P creates the following composition of preimage proofs:

1. Blinded re-encryption: u′′ · u−1 = (g t1 , g t2) · Epk(1,
∑

i ei ri )
2. Generalized Pederson commitment: c = C (e′,

∑
i ei si )

3. Commitment multiplications: c ′′i−1, c
′
i , c
′′
i (using a batch proof

for i = 2, . . . , n)
4. Pedersen commitment: c ′′n = C (

∏
i ei , s

′′
n )

5. Generalized Pedersen commitment: d = C (1,
∑

i si )

I Note that if n is given, everything except u, u′′, and the
corresponding proof can be pre-computed in advance (offline)

39



Recapitulation: Exponentiation Shuffle (1)

I Common input:
u1, . . . , un, u

′
1, . . . , u

′
n, c , (c1, . . . , cn) = C (M, s)

I Private input: π, α, s, s = (s1, . . . , sn)

I V chooses random seed z
I P computes the following:

1. (e1, . . . , en) = PRG (z)
2. u =

∏
i u

ei
i

3. u′′ = g t ·
∏

i (u
′
i )

eπ(i) t ∈R Zq

4. c =
∏

i c
ei
i

5. c ′i = C (e′i , s
′
i ) for s ′i ∈R Zq, i = 2, . . . , n

6. c ′′i = C (e′1 · · · e′i , s ′′i ) for s ′i ∈R Zq, i = 1, . . . , n
7. d =

∏
i ci
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Recapitulation: Exponentiation Shuffle (2)

I P creates the following composition of preimage proofs:

1. Pedersen commitment: c = C (α, s)
2. Generalized Pederson commitment: ci = C (m̂i , si ) (using

batch proof for j = 1, . . . , n)
3. Blinded exponentiation: u′′ = g t · uα
4. Generalized Pederson commitment: c = C (e′,

∑
i ei si )

5. Commitment multiplications: c ′′i−1, c
′
i , c
′′
i

(batch proof for i = 2, . . . , n)
6. Pedersen commitment: c ′′n = C (

∏
i ei , s

′′
n )

7. Generalized Pedersen commitment: d = C (1,
∑

i si )

I Note that if n is given, everything except u, u′′, and the
corresponding proof can be pre-computed in advance (offline)
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Open Quesions

I Can we make the proof non-interactive?

Ý Using non-interactive batch proofs (Fiat-Shamir)
Ý How secure is this?
Ý Does it affect pre-computations?

I Can we skip some commitments?

Ý The paper contains a commitment to t, but this seems not to
be necessary (already skipped)

Ý In the chained commitment multiplication proof, the output of
one proof is one of the inputs of the next proof
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Conclusion

I The proof is a composition of several basic preimage and
batch preimage proofs

I The size of the proof is O(n)
I A large portion of the proof can be computed offline

Ý Ok, if n is known in advance
Ý If n is unknown, the pre-computation can be done for an upper

bound N ≥ n, and when the input data arrives, it is “filled up”
with trivial values

I The proof can be generalized to incorporate:

Ý Restrictions on π (e.g., that π is a rotation)
Ý Any “shuffle-friendly map” (re-encryptions, exponentiations,

partial decryptions, or combinations thereof)

I Great job, Douglas!!!
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