University of Fribourg

Bern University of Applied Sciences

A Measure of Coercion-Resistance and its Application on JCJ Derivatives

Oliver Spycher

Biel, November 17th, 2011

(□)

University of Fribourg Bern University of Applied Sciences

Outline

 δ -Coercion-Resistance by Küster et al.

Coercion Resistance of JCJ

Coercion Resistance of JCJ Derivatives

Outline

$\delta\text{-}\mathsf{Coercion}\text{-}\mathsf{Resistance}$ by Küster et al.

Coercion Resistance of JCJ

Coercion Resistance of JCJ Derivatives

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

Our Understading of Coercion-Resistance

A voting protocol is coercion-resistant, if the adversary cannot tell whether a subject complied or applied a counter-strategy.

Possible Coercive Attacks

- Receipt-based
- Simulation
- Randomization
- Forced Abstention

< □ →

An attack

- two candidates c_1, c_2 , three voters v_1, v_2, v_3
- v₁ wants to vote for c₁
- coercer wants v₁ to vote for c₂
- ▶ v_1 wins, if $r_2 = 3$; result denoted $R = (r_1, r_2)$

An attack

- two candidates c_1, c_2 , three voters v_1, v_2, v_3
- v₁ wants to vote for c₁
- coercer wants v₁ to vote for c₂
- ▶ v_1 wins, if $r_2 = 3$; result denoted $R = (r_1, r_2)$

v_1 thinks

► Given that v₂ and v₃ vote for c₂ with 50% probability each, the chance of winning is 25% when complying with the coercer and 0% otherwise. Is this worth it?

The coercer is smart, so he chooses a better strategy.

A smarter attack

- two candidates c_1, c_2 , three voters v_1, v_2, v_3
- v₁ wants to vote for c₁
- coercer wants v_1 to vote for c_2
- ▶ v₁ wins, if the probability of his compliance is greater than the probability of his non-compliance

R	$P(R c_1)$	$P(R c_2)$
(0,3)	0	0.25
(1,2)	0.25	0.5
(2, 1)	0.5	0.25
(3,0)	0.25	0

A smarter attack

- two candidates c_1, c_2 , three voters v_1, v_2, v_3
- v₁ wants to vote for c₁
- coercer wants v_1 to vote for c_2
- ▶ v₁ wins, if the probability of his compliance is greater than the probability of his non-compliance

R	$P(R c_1)$	$P(R c_2)$
(0,3)	0	0.25
(1,2)	0.25	0.5
(2,1)	0.5	0.25
(3,0)	0.25	0

 $P(money|c_1) = 0.25$ $P(money|c_2) = 0.75$

Probability of winning dramatically increases for v_1 in case of complying with the coercer

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences

A smarter attack

- two candidates c_1, c_2 , three voters v_1, v_2, v_3
- v₁ wants to vote for c₁
- coercer wants v_1 to vote for c_2
- ▶ v₁ wins, if the probability of his compliance is greater than the probability of his non-compliance

R	$P(R c_1)$	$P(R c_2)$
(0,3)	0	0.25
(1,2)	0.25	0.5
(2,1)	0.5	0.25
(3,0)	0.25	0

 $P(money|c_1) = 0.25$ $P(money|c_2) = 0.75$

Probability of winning dramatically increases for v_1 in case of complying with the coercer (by $\delta = 0.75 - 025$)

University of Fribourg Bern University of Applied Sciences

Coercion-resistance δ_{min} in the ideal protocol Definitions

- k candidates, n honest participating voters
- $R = (r_0, ..., r_k)$ result $\in RES$, r_0 abstentions
- $P = (p_0, ..., p_k)$ probability distribution of R

 $r_0 + ... + r_k = n + 1$ (dishonest voters controlled by coercer) Finding δ_{min}

- Coercer wants candidate j, voter wants candidate i
- $A_R^q = P(R|q)$, given coerced voter voted for candidate q

• Coercer accepts run, iff
$$A_R^i \leq A_R^j$$

$$\bullet \ \delta_{min} = \max_{j} \sum_{R \in RES: A_{R}^{i} \leq A_{R}^{j}} (A_{R}^{j} - A_{R}^{i})$$

note: $A_{R}^{i} \leq A_{R}^{j}$, iff $\frac{r_{j}}{r_{i}} \geq \frac{p_{j}}{p_{i}}$

(□))

Oliver Spycher

University of Fribourg Bern University of Applied Sciences

The meaning of δ_{min}

The maximum fraction of the desired reward expected to be lost, when not complying with the coercer, in opposition to complying. Example

- k = 2 candidates, n = 2000 honest participating voters
- ▶ $P = (p_0 = 0.3, p_1 = 0.35, p_2 = 0.35)$ probability distribution of *R*
- Coercer offers 50.—
- $\delta_{min} = 0.021$, assuming voter wants candidate 1
- $E(money|complying) E(money|notcomplying) = \delta_{min} \times 50.-$
- In average the voter will loose 1.05 Should he comply?

Get a feeling

< □ ▶

University of Fribourg Bern University of Applied Sciences

Outline

 δ -Coercion-Resistance by Küster et al.

Coercion Resistance of JCJ

Coercion Resistance of JCJ Derivatives

< □ >

University of Fribourg Bern University of Applied Sciences

Page 14

Making JCJ an ideal protocol

If JCJ were ideal regarding coercion-resistance, then $\delta=\delta_{\min},$ but is it?

Assumptions

- trustworthy registrars during setup
- trustworthy talliers (as a group)
- anonymous channel
- trusted platform
- adversarial uncertainty
- \rightarrow JCJ relies on adversarial uncertainty regarding R and Γ

Given the distribution of R, JCJ can be shown to be ideal. But how handle Γ ? How big will it be?

< 🗆 🕨

Page 15

Coercion based on Г

Coercer wants to find out if voter applied counter-strategy by observing how many fake votes have been cast.

Assume Γ a random Variable with distribution $F_{\Gamma}(x)$

Assume $F_{\Gamma}(x)$ has only 1 local maximum

Coercion based on Г

Coercer wants to find out if voter applied counter-strategy by observing how many fake votes have been cast.

Assume Γ a random Variable with distribution $F_{\Gamma}(x)$

Assume $F_{\Gamma}(x)$ has only 1 local maximum

Voter wins, if $\Gamma \leq x_0$; $F_{\Gamma}(x_0) = \max F_{\Gamma}(x)$

Easy to see that $\delta_{\Gamma} = \frac{1}{\max F_{\Gamma}(x)}$

Coercion based on Г

Coercer wants to find out if voter applied counter-strategy by observing how many fake votes have been cast.

Assume Γ a random Variable with distribution $F_{\Gamma}(x)$

Assume $F_{\Gamma}(x)$ has only 1 local maximum

Voter wins, if $\Gamma \leq x_0$; $F_{\Gamma}(x_0) = \max F_{\Gamma}(x)$

Easy to see that $\delta_{\Gamma} = \frac{1}{\max F_{\Gamma}(x)}$

What do we conclude from our experiment?

Coercion based on Г

Coercer wants to find out if voter applied counter-strategy by observing how many fake votes have been cast.

Assume Γ a random Variable with distribution $F_{\Gamma}(x)$

Assume $F_{\Gamma}(x)$ has only 1 local maximum

Voter wins, if $\Gamma \leq x_0$; $F_{\Gamma}(x_0) = \max F_{\Gamma}(x)$

Easy to see that $\delta_{\Gamma} = \frac{1}{\max F_{\Gamma}(x)}$

What do we conclude from our experiment?

How do δ_{Γ} and δ_{min} relate to eachother?

< □ >

University of Fribourg Bern University of Applied Sciences

Outline

 $\delta\text{-}\mathsf{Coercion}\text{-}\mathsf{Resistance}$ by Küster et al.

Coercion Resistance of JCJ

Coercion Resistance of JCJ Derivatives

University of Fribourg Bern University of Applied Sciences

The Schemes

To improve the efficiency of time-critical operations

- KH11 (Luzern)
- SKHS11b (VoteID)
- Clarke
- SKHS11a (FCJCJ)
- FCJCJ++
- Araujo

Except Araujo: Trade-off between coercion-resistance and efficiency (parameter)

Araujo: No verifiability in the sense of the other schemes

< □ >

University of Fribourg Bern University of Applied Sciences

Page 21

SKHS11b, Clarke, SKHS11a (FCJCJ), FCJCJ++

Associate votes with voter roll entries to improve efficiency in tallying.

Trade-off between coercion-resistance and efficiency controlled by parameter β .

Coercer strategy: Count number of votes associated with voter roll entry. Compute δ_β similar as δ_Γ .

Comparison

10000 voters

	SKHS11b	Clarke	SKHS11a	FCJCJ++
δ	0.1	0.1	0.1	0.1
β	16	16	10	10
Setup	0	0	0	Х
Casting	0	х	0	0
Tallying	х	0	х	0

Comparison

10000 voters

	SKHS11b	Clarke	SKHS11a	FCJCJ++
δ	0.04	0.04	0.04	0.04
β	100	100	25	25
Setup	0	0	0	Х
Casting	0	х	0	0
Tallying	х	0	Х	0

Comparison

10000 voters

	SKHS11b	Clarke	SKHS11a	FCJCJ++
δ	0.01	0.01	0.01	0.01
β	2000	2000	100	100
Setup	0	0	0	Х
Casting	0	х	0	0
Tallying	х	0	Х	0

Thank You!

Questions / Remarks

e-voting.bfh.ch and www.secuso.cased.de

contacts, papers, reports

< 🗆 🕨

University of Fribourg Bern University of Applied Sciences