Berner Fachhochschule - Technik und Informatik - RISIS

On Road Pricing

E-Voting Seminar

Eric Dubuis

June 25th, 2012

• • • •

Berner Fachhochschule Technik und Informatik $\bullet \square \to$

Problem Statement

< □ ▶

Berner Fachhochschule
 Technik und Informatik

Eric Dubuis On Road Pricing

Page 2

- The Problem Illustrated
- The Model
- A Solution
- The Protocol
- Enforcement
- Security Analysis
- Summary

< □ ▶

The Problem Illustrated

The Model

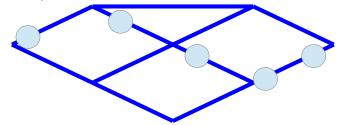
A Solution

The Protocol

Enforcement

Security Analysis

Summary


< 🗆 🕨

 \bullet \bullet \bullet

Page 5

Traffic Network

Basic concepts:

- ▶ "point tuple": ⟨tag, time, location⟩
- ▶ path of car p_c: {⟨tag, time, location⟩}
- cost function: f(p_c)

If location privacy were no concern then the tags would uniquely identify cars.

< □ >

Kinds of Functions

We want functions $f(p_c)$ such as:

Usage-based tolls Assessing path-dependant toll

Speed surveillance

Berner Fachhochschule Technik und Informatik

Detecting speed limit violations

"Pay-as-you-go" insurance premiums Individualizing insurance premiums depending on, for example, acceleration

The Problem Illustrated

The Model

A Solution

The Protocol

Enforcement

Security Analysis

Summary

< 🗆 🕨

Participants

The system model is composed of drivers, cars, and a (logical) server

Drivers

Driver drive cars, but run also client software

Cars

Every car has a transponder obtaining point tuples (GPS, roadside devices)

Logical server

Collects point tuples; participates in a cryptographic protocol

Threat Model

It is obvious that participants may want to misbehave:

- The driver runs a modified client software to change the result of f(p_c)
- 2. The driver manipulates the transponder
 - → by turning it off

Berner Fachhochschule

Technik und Informatik

- \rightarrow by letting it upload synthesized data
- \rightarrow by masquerading another car
- 3. The server guesses the path from the uploads point tuples
- 4. The server attempts to change the result of $f(p_c)$
- 5. Some intermediate device in the data network synthesizes false point tuples or modifies point tuples in transit

Design Goals

The following three design goals are envisaged:

Correctness

For every car *c* having path p_c , the server computes the correct value $f(p_c)$

Efficiency

The protocol must be sufficiently efficient allowing inexpensive in-car devices

Location privacy

See next slide...

Location Privacy

Let

- ➤ S be the server's database of point tuples (tag, time, location);
- S' be the server's database of point tuples (time, location) such that for every (tag, time, location) ∈ S there exists a tuple (time, location) ∈ S';
- c be an arbitrary car;

Berner Fachhochschule

Technik und Informatik

- V denote all information to the server;
- ▶ \mathcal{V}' denote all information contained in \mathcal{S}' , the result of $f(p_c)$ of car c, and any other side information.

Then the computation of $f(p_c)$ preserves the *location privacy* of c if the server's information about the tuples of c is insignificantly larger in \mathcal{V} than in \mathcal{V}' .

On Road Pricing

Page 11

The Problem Illustrated

The Model

A Solution

The Protocol

Enforcement

Security Analysis

Summary

< □ ▶

 $\bullet \bullet \bullet \bullet \bullet$

Different Phases (1/3)

The participants' interactions occur in three phases

1. Registration

- \rightarrow Driver registers identifying information *id* to the server
- → Driver generates *random tags*
- → Driver transfers random tags to transponder (the car)
- → Driver transfers *commitments* of tags to the server
- → Server binds commitments to driver/car

2. Driving

See next slide...

3. Reconciliation

See next slides...

Different Phases (2/3)

The participants' interactions occur in three phases

1. Registration

See previous slide...

- 2. Driving
 - → Transponder collects point tuples $\langle time, location \rangle$
 - → Transponder sends point tuples (*tag*, *time*, *location*) to the server (continuously or in batch mode); random tags are never reused
 - → Random *spot checks* send sporadic *identifying* point tuples ⟨*id*, *time*, *location*⟩ to the server

3. Reconciliation

See next slide...

< 🗆 🕨

Different Phases (3/3)

The participants' interactions occur in three phases

1. Registration

See previous slides...

2. Driving

See previous slide...

3. Reconciliation

At the end of the tax interval, the sever computes f.

< □ >

Berner Fachhochschule
 Technik und Informatik

The Problem Illustrated

The Model

A Solution

The Protocol

Enforcement

Security Analysis

Summary

< 🗆 🕨

• • • •

Notation

The following notation will be used:

- Let $v_i \in_R V$ be the a random (vehicle) tag
- Let f_k , k chosen at random, be a random function
- Let c(.) be a commitment*
- ▶ Let *d*(.) be a *decommitment key* of commitment *c*(.)
- Let s_j be a random (vehicle) tag received at the server
- Let t_j be a tolling cost associated with s_j
- *) Homomorphic commitment having the property $c(v) \cdot c(v') = c(v + v')$.

< □ ▶

Page 18

Three Phases of the Protocol

Client		Server
Chooses v _i , k		
Encrypts $f_k(v_i)$		
Stores $d(k)$, $d(f_k(v_i))$		
Sends	$-c(k), c(f_k(v_i)) \rightarrow$	Binds values to C.
Produces p.t. using v_i		
Sends anonymously	-p.t. with $v_i \rightarrow$	Stores v _i as s _j
		$\forall s_i \text{ computes } t_i$
	$\leftarrow (s_i, t_i) -$	Sends
Computes $T = \sum_{V_i = S_i} t_j$		
Sends	-T ightarrow	
Rou	and protocol begins	
m t moth tumloo		

p.t. = path tuples

< □ →

Round Protocol (b = 0)

Client		Server
$\overline{S.\ (s_i,t_i)} ightarrow (s_i,t_i)^*$		
Encrypts $f_k(s_i)$		
Computes $c(t_i)$		
Stores $d(f_k(s_i))$, $d(t_i)$		
Sends	$-c(f_k(s_j)),\ c(t_j) ightarrow$	
	i i i	Choose <i>b</i> a.r.
	- d ightarrow	Challenge <i>b</i>
If $b = 0$:		
Sends	$-k$, $(s_j,t_j)^*$, $d(k)$, $d(t_j) ightarrow$	
		If $b = 0$:
		Verifies $(s_i, t_i)^*$,
		$\exists i, j:$
		$f_k(s_i) = f_k(v_i)$
$S_{.} = shuffles, a.r. = at$	random, r.o. = random order	
Berner Fachhochschule Technik und Informatik		Eric Dubui On Road Pricin

Round Protocol (b = 1)

Client		Server
<u></u>		
	$\leftarrow b$ –	
If $b = 1$:		
Computes D		
Sends	$-D$, $d(f_k(v_i))$, $ ightarrow$	
		If $b = 1$:
		Computes
		$\prod_{j,k,f_k(v_i)=f_k(s_j)} c(t_j)$

Let $I = \{t_j : s_j \in \{v_i\} \cap \{s_j\}\}$. By the homomorphic of the commitment scheme: $\prod_{t_j \in I} c(t_j)$ is the cyphertext of the total tolling cost T whose decommitment key is $D = \sum_{t_i \in I} d(t_j)$.

< □ >

The Problem Illustrated

The Model

A Solution

The Protocol

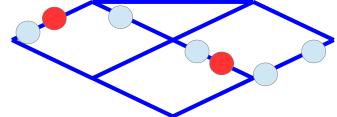
Enforcement

Security Analysis

Summary

< □ ▶

 \bullet \bullet \bullet


Enforcement

Random spot checks

Client may cheat by turning off the transponder or by providing "invented" path tuples.

Client must prove that, for each random spot check, she provided a tuple "close enough" to each spot check.

- The Problem Illustrated
- The Model
- A Solution
- The Protocol
- Enforcement

Security Analysis

Summary

Page 23

(Some) Security Analysis

Client and network attacks:

- Point tuples should be encrypted with server's public key
- Point tuples should be anonymously signed (e.g., via group signature scheme)
- Spot checks reduce client misbehavior likelihood
- If two clients commit the same tags then they pay the sum of tolling amounts

Server misbehavior:

- Point tuples should be sent anonymously
- Collect p.t. of areas with high traffic density only
- Little changes to the protocol make server more resilient to other attacks

• • • • Berner Fachhochschule Technik und Informatik

- The Problem Illustrated
- The Model
- A Solution
- The Protocol
- Enforcement
- Security Analysis

Summary

< □ ▶

 $\bullet \bullet \bullet \bullet$

Summary of Talk

- Talk scratched the surface of the problem domain only
- Presented protocol can be used for tolling, speeding tickets, insurance premium computation
- Spot checking can be abandoned if tamper-resistent transponders are used
- Performance is said to be good enough. Could be improved if location privacy is compromised a little by forming *tag clusters*
- Location privacy-preserving solutions can be built using building blocks similar to the ones used for e-voting
- I'm tempted to say that the same is true for e-ticketing systems

Bibliography (1/3)

This talk is based on the following paper:

- (*) R. A. Popa, H. Balakrishnan, A. Blumberg: VPriv: Protecting Privacy in Location-Based Vehicular Services. 18th USENIX Security Symposium, Montreal, Canada, 2009.
- (*) Available in ./bibliography folder

Berner Fachhochschule

Technik und Informatik

Eric Dubuis On Road Pricing

Page 27

Bibliography (2/3)

Other papers and/or articles related to this subject:

- (*) B. Jacobs: Architecture is Politics: Security and Privacy Issues in Transport and Beyond. Based on key note talk, Privacy, and Data Protection (CPDP) conference, Brussels, 2009.
- (*) W. de Jonge, B. Jacobs: Privacy-friendly Electronic Traffic Pricing via Commits. In: LNCS, workshop of Formal Aspects in Security and Trust, Malaga, Spain, 2008.
- (*) J. Balasch, C. Troncoso, B. Preneel, I. Verbauwhede, C. Geuens: PrETP: Privacy-Preserving Electronic Toll Pricing (extended version). Normal version presented on: 19th USENIX Security Symposium, Washington, USA, 2010.
- (*) X. Chen, G. Lenzini, S. Mauw, J. Pang: A Group Signature Based Electronic Toll Pricing System. In: Clinical Orthopaedics and Related Research, Vol. ABS/1108.0574, 2011.
- (*) J. H. Hoepman, B. Jacobs, P. Vullers: Privacy and Security Issues in e-Ticketing. Unpublished.

(*) Available in ./bibliography folder

Bibliography (3/3)

Other papers and/or articles related to this subject:

- (*) M. Langheinrich: Privacy by Design Principles of Privacy-Aware Ubiquitous Systems. In: Ubicomp 2001: Ubiquitous Computing, LNCS, Vol. 2201, 2001.
- (*) A.-R. Sadeghi, I. Visconti, C. Wachsmann: User Privacy in Transport Systems Based on RFID E-Tickets. Unpublished.
- J. Balasch, I. Verbauwhede, B. Preneel: An embedded platform for privacy-friendly road charging applications. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010.
- J.-H. Hoepman, G. Huitema, J. Berleur, M. Hercheui, L. Hilty: Privacy Enhanced Fraud Resistant Road Pricing. In: What Kind of Information Society? Governance, Virtuality, Surveillance, Sustainability, Resilience; IFIP Advances in Information and Communication Technology Springer, 2010, ISBN 978-3-642-15478-2.

(*) Available in ./bibliography folder

• • •

✓ □ →
Eric Dubuis

On Road Pricing