

Verification of Human Interaction Security Protocols (HISP) – An Attempt

E-Voting Seminar 24 May 2012

Michael Schläpfer

I. Introduction

- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Security protocols

A **protocol** consists of a set of rules (conventions) that determine the exchange of messages between two or more principals. In short, a **distributed algorithm** with emphasis on communication.

Security (or **cryptographic**) protocols use cryptographic mechanisms to achieve security objectives.

Some common security objectives:

- Entity or message authentication
- Key establishment
- Integrity
- Fair exchange
- Non-repudiation
- ...

Formal security models

- Formal specification with formal languages
- Semantics of languages allow for verification and validation with mathematical methods

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Two formal languages

Message notation

Roles: A, B or Alice, Bob

Agents: a, b, i

Symmetric Keys: K, K_{AB}, \ldots ; sk(A, S)

Symmetric Encryption: $\{|M|\}_K$

Public Keys: K, pk(A)

Private Keys: inv(K), inv(pk(A))

Asymmetric Encryption: $\{M\}_K$

Signing: $\{M\}_{inv(K)}$

Nonces: NA, N1 fresh data items used for challenge/response. N.B.: sometimes subscripts are used, e.g. N_A , but it does not mean that principals can find out that N_A was generated by A.

Timestamps: T. Denote time, e.g. used for key expiration.

Message concatenation: M_1, M_2, M_3

Role scripts for A and B

AB $\{NA, A\}_{\mathsf{pk}(B)}$ $\{NA, A\}_{\mathsf{pk}(B)}$ $\{NA, A\}_{\mathsf{pk}(B)}$ $\{NA, NB\}_{\mathsf{pk}(A)}$ $\{NA, NB\}_{\mathsf{pk}(A)}$ $\{NA, NB\}_{\mathsf{pk}(A)}$ $\{NB\}_{\mathsf{pk}(B)}$ $\{NB\}_{\mathsf{pk}(B)}$ $\{NB\}_{\mathsf{pk}(B)}$

Textual:

 $NSPK(A) := snd(\{NA, A\}_{pk(B)}) \cdot rcv(\{NA, NB\}_{pk(A)}) \cdot snd(\{NB\}_{pk(B)})$

Operational semantics

Defined by a transition system

 $TS(P, IK_0, th_0) = (State, \rightarrow, ([], IK_0, th_0))$

Definition (State)

- State = Trace × IntruderKnowledge × Threads.
- Trace = (TID × Event)*
- IntruderKnowledge = P(Term)
- Threads = $TID \rightarrow Role$

where the trace and the intruder knowledge are ground and the threads are closed.

Operational semantics

 $TS(P, IK_0, th_0) = (State, \rightarrow, ([], IK_0, th_0))$

Transition relation defined by a set of deduction rules

Signals sig will be explained later

Modeling the Attacker

Communication in an dangerous world.

- On the Security of Public Key Protocols (IEEE Trans. Inf. Th. 1983):
- Danny Dolev
- Andrew C. Yao

The Dolev-Yao Intruder:

- Controls the network (read, intercept, send)
- Is a legitimate user
- Can apply every publicly available information or function
- Can apply his private information and functions
- Cannot break cryptography

Modeling the Attacker

Definition

Given a set of terms M we define $\mathcal{DY}(M)$ as the least closure of M under the following rules:

$$\frac{\overline{m \in \mathcal{DY}(M)} \text{ Axiom } (m \in M) \quad \frac{s \in \mathcal{DY}(M)}{t \in \mathcal{DY}(M)} \text{ Algebra } (s \approx t) \\
\frac{t_1 \in \mathcal{DY}(M) \quad \dots \quad t_n \in \mathcal{DY}(M)}{f(t_1, \dots, t_n) \in \mathcal{DY}(M)} \text{ Composition } (f \in \Sigma_p) \\
\frac{\langle m_1, m_2 \rangle \in \mathcal{DY}(M)}{m_i \in \mathcal{DY}(M)} \text{ Proj}_i \quad \frac{\{|m|\}_k \in \mathcal{DY}(M) \quad k \in \mathcal{DY}(M)}{m \in \mathcal{DY}(M)} \text{ DecSym} \\
\frac{\{m\}_k \in \mathcal{DY}(M) \quad \text{inv}(k) \in \mathcal{DY}(M)}{m \in \mathcal{DY}(M)} \text{ DecAsym} \quad \frac{\{m\}_{\text{inv}(k)} \in \mathcal{DY}(M)}{m \in \mathcal{DY}(M)} \text{ OpenSig}$$

A simple example

Example

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Protocol properties

Properties:

- Semantics of a security protocol P is a set of traces ||P|| = traces(P)
- Security goal / property ϕ also denotes a set of traces $||\phi||$

Correctness:

• Protocol P satisfies property ϕ , written $P \models \phi$, iff

 $||P|| \subseteq ||\phi||$

Attack traces are those in

 $||P|| - ||\phi||$

Every correctness statement is either true or false

Ok, no attacks.

Formalizing security properties

Direct formulation:

- Formulate property directly in terms of send and receive events occurring in protocol traces, i.e., as a set of (or predicate on) traces
- Drawback: Standard properties like secrecy and authentication become highly protocol-dependent, since they need to refer to the concrete protocol messages

Protocol instrumentation

- Insert special signal events into the protocol roles
- Possible to express properties independently of protocol
 Example:

sig(secret, A, B, M)

claims that M is a secret shared by roles A and B

Formalizing secrecy

Example (NSPK Attack)			
$\frac{Trace}{(0, \text{snd}(\{na_0, i\}_{pk(i)}))} \\ (1, \text{rcv}(\{na_0, a\}_{pk(b)})) \\ (1, \text{snd}(\{na_0, nb_1\}_{pk(a)})) \\ (0, \text{rcv}(\{na_0, nb_1\}_{pk(a)})) \\ (0, \text{snd}(\{nb_1\}_{pk(i)})) \\ (1, \text{rcv}(\{nb_1\}_{pk(i)})) \\ (1, $	<i>th</i> (0)	th(1)	

Definition (Secrecy)

The property Secret(A, B, M) consists of all traces tr satisfying

 $\forall tid. (tid, sig(secret, A, B, M)) \in set(tr) \land B \neq i \Rightarrow M \notin D\mathcal{Y}(IK(tr))$

 $IK(tr) = \{m | \exists tid.(tid, snd(m)) \in set(tr)\}$

Formalizing authentication

Two new signals:

- running
- commit

Different definitions:

- Aliveness
- Weak agreement
- Non-injective agreement
- Injective agreement
- ...

Example:

Definition (Non-injective agreement)

We define $tr \in Agreement_{NI}(A, B, M)$ for a trace tr by

 $\forall tid. (tid, sig(commit_A, A, B, M)) \in set(tr) \land B \neq i \\ \Rightarrow \exists tid'.(tid', sig(running_B, B, A, M)) \in set(tr)$

Formalizing authentication

•Two new signals:

- running
- commit

Different definitions:

- Aliveness
- Weak agreement
- Non-injective agreement
- Injective agreement
- ...

Example:

Definition (Injective agreement)

We define $tr \in Agreement(A, B, M)$ for a trace tr iff there is an injective function $g: TID \rightarrow TID$ such that

 \forall tid. (tid, sig(commit_A, A, B, M)) ∈ set(tr) ∧ B ≠ i \Rightarrow (g(tid), sig(running_B, B, A, M)) ∈ set(tr)

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Modeling the Attacker

Communication in an dangerous world.

- On the Security of Public Key Protocols (IEEE Trans. Inf. Th. 1983):
- Danny Dolev
- Andrew C. Yao

The Dolev-Yao Intruder:

- Controls the network (read, intercept, send)
- Is a legitimate user
- Can apply every publicly available information or function
- Can apply his private information and functions
- Cannot break cryptography

Evolution of the Attacker

- Modeling and Analyzing Security in the Presence of Compromising Adversaries (ESORICS 2010):
- David A. Basin
- Cas Cremers

The extended Dolev-Yao Intruder:

- Additionally gets access to specific long-term secrets
- Allows to verify perfect forward secrecy

Evolution of the Attacker

Depending on the **application** and the resulting **threat sources** we will have to assume a very powerful attacker, capable of **controlling the entire computing platform**.

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Human Interaction Security Protocols

A **human interaction protocol (HIP)** consists of a set of rules (conventions) that determine the exchange of messages between two or more principals where at least one principle is human. In short, a **distributed algorithm** with emphasis on communication between humans and machines.

Human Interaction Security protocols (HISP) use cryptographic mechanisms to achieve security objectives between humans and machines.

Security objectives include:

- Entity or message authentication
- Integrity
- Non-repudiation
- Secrecy
- ...

Humans are limited in terms of computing capabilities and therefore they need help for the computations required by cryptographic protocols!

The Simple HISP Problem

Trust-base T

- We abstract from the user's platform
- The attacker offers the network services to the user
- Abstracting from the construction of the messages as it is done in Dolev-Yaolike models cannot cover the Secure Platform Problem in general
- Trusted functionalities modeled by a trust-base

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

(tr

Operational Semantics States:

State := Trace $\times K_V \times K_S \times K_T \times K_I \times$ Threads Trace := (TID \times Event)* $K_V := \wp$ (Term) $K_S := \wp$ (Term) $K_T := \wp$ (Term) $K_I := \wp$ (Term) Threads := TID \rightarrow Role

Operational Semantics Transition Rules:

$$\frac{th(tid) = snd(A, B, M) \cdot tl \quad A = v \land B = t \lor A = t \land B = v}{(tr, K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, snd(A, B, M)) K_{V}, K_{S}, K_{T}, K_{I}, th[tid \rightarrow tl])} \quad snd_{sec}$$

$$\frac{th(tid) = snd(A, B, M) \cdot tl \quad \neg (A = v \land B = t \lor A = t \land B = v)}{(tr, K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, snd(A, B, M)) K_{V}, K_{S}, K_{T}, K_{I} \cup [M], th[tid \rightarrow tl])} \quad snd_{insec}$$

$$\frac{th(tid) = rcv(A, B, M) \cdot tl \quad A = v \land B = t \lor A = t \land B = v}{(tr, K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, rcv(A, B, M \sigma)) K_{V} \cup [M \sigma], K_{S}, K_{T} \cup [M \sigma], K_{I}, th[tid \rightarrow tl \sigma])} \quad rcv_{sec}$$

$$\frac{th(tid) = rcv(A, B, M) \cdot tl \quad \neg (A = v \land B = t \lor A = t \land B = v)}{(tr, K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, rcv(A, B, M \sigma)) K_{V} \cup [M \sigma], K_{S}, K_{T} \cup [M \sigma], K_{I}, th[tid \rightarrow tl \sigma])} \quad rcv_{insec}$$

$$\frac{th(tid) = rcv(A, B, M) \cdot tl \quad \neg (A = v \land B = t \lor A = t \land B = v)}{(K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, rcv(A, B, M \sigma)) K_{V} \cup [M \sigma] = vars(M) \quad M \sigma \in DY(K_{I})} \quad rcv_{insec}$$

$$\frac{th(tid) = rcv(A, B, M) \cdot tl \quad \neg (A = v \land B = t \lor A = t \land B = v)}{(K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, rcv(A, B, M \sigma)) K_{V} \cup [M \sigma] = vars(M) \quad M \sigma \in DY(K_{I})} \quad rcv_{insec}$$

$$\frac{th(tid) = sig(sig, M) \cdot tl}{(tr, K_{V}, K_{S}, K_{T}, K_{I}, th) \rightarrow (tr \cdot (tid, sig(sig, M)), K_{V}, K_{S}, K_{T}, K_{I}, th[tid \rightarrow tl \sigma])} \quad sig$$

Michael Schläpfer, Institute of Information Security, ETH Zurich

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Formalizing secrecy

 $\frac{th(tid) = rcv(A, B, M) \cdot tl \quad \neg (A = v \land B = t \lor A = t \land B = v) \quad dom(\sigma) = vars(M) \quad M \sigma \in DY(K_I)}{(tr, K_V, K_S, K_T, K_I, th) \rightarrow (tr \cdot (tid, rcv(A, B, M\sigma)) K_V \cup \{M \sigma | B = v\}, K_S \cup \{M \sigma | B = s\}, K_T \cup \{M \sigma | B = t\}, K_I, th[tid \rightarrow tl \sigma])} \quad rcv_{sec} \in C_{sec}$

 $\frac{th(tid) = sig(sig, M) \cdot tl}{(tr, K_V, K_S, K_T, K_I, th) \rightarrow (tr \cdot (tid, sig(sig, M)), K_V, K_S, K_T, K_I, th[tid \rightarrow tl])} \quad sig$

Definition (Secrecy)

The property Secret(A, B, M) consists of all traces tr satisfying

 $\forall tid. (tid, sig(secret, A, B, M)) \in set(tr) \land B \neq i \Rightarrow M \notin D\mathcal{Y}(IK(tr))$

 $IK(tr) := \{ m | \exists tid.(tid, snd(A, B, m)) \in set(tr) \land \neg (A = v \land B = t \lor A = t \land B = v) \}$

And the same applies for Authenticity!

- I. Introduction
- 2. Symbolic Protocol Analysis Basics
- 3. Evolution of the Symbolic Attacker
- 4. Human Interaction Security Protocols (HISP)
- 5. Symbolically Modeling HISP
- 6. Verification of Security Properties in HISP
- 7. Conclusion

Conclusion

Summary:

- Human Interaction Security Protocols are widespread
- No formal symbolic support for security verification so far
- Extension of existing approaches that are used by existing verification tools
- Foundation also for modeling the Secure Platform Problem in e-voting

Open issues and future work:

- Formalize orthogonal problem of computability for V and T (deduction rules or equational theory)
- Formalize channel restrictions and limitations between V and T
- Extend security goal definitions (e.g., e-voting related properties)
- Include in existing model checking tools
- Implement proof of concept with example protocols / attacks

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions

