Pairing Based Cryptography

An Introduction

Seminar, e-Voting Group, BFH

Biel/Bienne, May 24, 2011
Stephan Krenn ${ }^{1}$
${ }^{1}$ Bern University of Applied Sciences

First of all ...

```
2002: 652
2003: 815
2004 : 1'113
2005: 1'398
2006 : 1'650
2007 : 1'655
2008: 1'779
2009:1'288
2010: 525
2011: 94
```

More than 11'000 publications within 10 years!

Two-Party Key Exchange

- Standard Diffie-Hellman key exchange on elliptic curves.

Two-Round Three-Party Key Exchange

Two-Round Three-Party Key Exchange

- Assumed to be as secure as Diffie-Hellman
- Two synchronized messages per party.

What we Want to Have

Outline

Bilinear Pairings

Some Applications

Known Pairings

Definition

For the whole talk let $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{T}$ be groups of prime order q.

Definition

A mapping $e(.,):. \mathcal{G}_{1} \times \mathcal{G}_{2} \rightarrow \mathcal{G}_{T}$ is called a (bilinear) pairing, if the following conditions are satisfied:

Bilinearity: $e(P+Q, R)=e(P, R) e(Q, R) \quad \forall P, Q \in \mathcal{G}_{1}, \forall R \in \mathcal{G}_{2}$,

$$
e(P, R+S)=e(P, R) e(R, S) \quad \forall P \in \mathcal{G}_{1}, \forall R, S \in \mathcal{G}_{2}
$$

Non-degeneracy: $\exists(P, Q) \in \mathcal{G}_{1} \times \mathcal{G}_{2}: e(P, R) \neq 1$.
Computability: e(.,.) can be evaluated efficiently.

Basic Properties

Lemma

Let e(.,.) : $\mathcal{G}_{1} \times \mathcal{G}_{2} \rightarrow \mathcal{G}_{T}$ be a bilinear pairing. Then the following holds for all $P, Q \in \mathcal{G}_{1}$ and $R, S \in \mathcal{G}_{2}$:
(a) $e(P, \infty)=e(\infty, R)=1$,
(b) $e(P,-R)=e(-P, R)=e(P, R)^{-1}$,
(c) $e(a P, b R)=e(P, R)^{a b}$ for all $a, b \in \mathbb{Z}$,
(d) $\langle P\rangle=\mathcal{G}_{1}$ and $\langle R\rangle=\mathcal{G}_{2} \quad \Rightarrow \quad\langle e(P, R)\rangle=\mathcal{G}_{T}$,
(e) $f(X)=e(X, R)$ is a homomorphisms from \mathcal{G}_{1} to \mathcal{G}_{T}, and an isomorphism for $R \neq \infty$.
(f) For an isomorphism $\psi: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}, e(P, \psi(Q))=e(Q, \psi(P))$.

From now on, we assume that $\mathcal{G}_{1}=\mathcal{G}_{2}$.

Bilinear Diffie-Hellman Assumptions

Definition (Bilinear Diffie-Hellman (BDH) Assumption)

Given: $(P, a P, b P, c P)$ with $a, b, c \in_{R} \mathbb{Z}_{q}^{*}$
Required: $e(P, P)^{a b c}$
The BDH assumption says that the advantage of every PPT algorithm is at most negligibly better than guessing.

Definition (Decisional BDH (DBDH) Assumption)

Given: $(P, a P, b P, c P, r)$ with $a, b, c \in_{R} \mathbb{Z}_{q}^{*}$, and $r\left\{\begin{array}{l}\epsilon_{R} \mathcal{G}_{T} \\ =e(P, P)^{a b c}\end{array}\right.$ Required: $e(P, P)^{a b c} \stackrel{?}{=} r$
The DBDH assumption says that the success probability of every PPT algorithm is at most negligibly larger than $1 / 2$.

Co-Gap Diffie-Hellman Groups

Let $P \in \mathcal{G}_{1}, R \in \mathcal{G}_{2}$ be generators, and $\psi():. \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ be an isomorphism with $\psi(P)=R$.

Definition (Co-Diffie-Hellman (Co-DH) Problems)

- Decisional Co-DH (D-Co-DH) Problem

Given: $(P, R, a P, b R, c R)$ with $a, b \in_{R} \mathbb{Z}_{q}^{*}$ and $c\left\{\begin{array}{l}\epsilon_{R} \mathcal{G}_{2} \\ =a b \bmod q\end{array}\right.$
Required: $a b \stackrel{?}{=} c \bmod q$

- Computational Co-DH (C-Co-DH) Problem Given: $(P, R, a P, b R)$ with $a, b \in_{R} \mathbb{Z}_{q}^{*}$ Required: $a b R$

Definition (Co-Gap Diffie-Hellman (Co-GDH) Groups)

$\mathcal{G}_{1}, \mathcal{G}_{2}$ are said to be Co-GDH groups if D-Co-DH can be solved efficiently but C-Co-DH can not.

Other Problems

- k-Bilinear Diffie-Hellman Inversion:

Given $P, a P, a^{2} P, \ldots, a^{k} P$, compute $e(P, P)^{\frac{1}{a}}$.
■ k-Decisional Bilinear Diffie-Hellman Inversion:
Distinguish $P, a P, a^{2} P, \ldots, a^{k} P, e(P, P)^{\frac{1}{a}}$ from $P, a P, a^{2} P, \ldots, a^{k} P, e(P, P)^{b}$

- Decisional Hash Bilinear Diffie-Hellman Problem:

Given $P, a P, b P, c P, r$ and a hash function H decide whether $r=H\left(e(P, P)^{a b c}\right)$.

Outline

Bilinear Pairings

Some Applications

Known Pairings

- Encryption schemes
\square (Hierarchical) ID-based encryption
\square Searchable public key encryption
\square (ID-based) Threshold decryption
- Signature schemes
\square Blind signatures
\square Short signatures
\square Ring signatures
\square Verifiable committed signatures (\approx non-interactive fair exchange)
\square (Hierarchical) ID-based variants of the above
\square Threshold signatures
- Miscellaneous
\square Key exchange
\square Signcryption
\square Identification schemes
\square (ID-based) chameleon hashes

One-Round Three-Party Key Exchange

 Joux

- No synchronization needed any more, thus "one round".

Short Signatures

Boneh, Lynn, Shacham
Let $e(.,):. \mathcal{G}_{1} \times \mathcal{G}_{1} \rightarrow \mathcal{G}_{T}$ be a bilinear pairing and $H():.\{0,1\}^{*} \rightarrow \mathcal{G}_{1}$ a hash function.

KeyGen Let $\left\langle P_{1}\right\rangle=\mathcal{G}_{1}$. Let $x \in_{R} \mathbb{Z}_{q}^{*}$ be the secret key, and $Y=x P_{1}$ be the public key.
Sign To sign a message M, the user computes $\sigma=x H(M)$.
Verifiy The receiver accepts, iff $\left(P_{1}, Y, H(M), \sigma\right)$ is a Diffie-Hellman tuple, i.e., iff $e\left(P_{1}, \sigma\right)=e(Y, H(M))$.

Lemma

If \mathcal{G}_{1} is a GDH group, the scheme is secure against existential forgery under adaptive chosen message attacks in the ROM.

Searchable Public Key Encryption

Boneh, Crescenzo, Ostrovsky, Persiano

Idea: add a list of encrypted tags to a ciphertext such that, e.g., a mail gateway can route an email to the right device. That is, for a list of tags W_{1}, \ldots, W_{n}, Bob sends

$$
E_{A_{\text {pub }}}(M)\left\|S\left(A_{\text {pub }}, W_{1}\right)\right\| \ldots \| S\left(A_{\text {pub }}, W_{n}\right)
$$

to Alice.
The gateway can check whether $W_{i}=W$ for a predefined key word, but does not learn anything if this is not the case.

Searchable Public Key Encryption

Let $e(.,):. \mathcal{G}_{1} \times \mathcal{G}_{1} \rightarrow \mathcal{G}_{T}$ be a bilinear map, and let $H_{1}():.\{0,1\}^{*} \rightarrow \mathcal{G}_{1}, H_{2}():. \mathcal{G}_{2} \rightarrow\{0,1\}^{\prime}$ be hash functions.

KeyGen Let P be a public generator of \mathcal{G}_{1}, and let $s \in \mathbb{Z}_{q}^{*}$ be Alice's secret key. Her public key is given by $A_{p u b}=s P$. Give $T_{W}=s H_{1}(W)$ as a trapdoor to the gateway.
Encrypt Draw $r \in_{R} \mathbb{Z}_{q}^{*}$ and set

$$
S\left(A_{\text {pub }}, W\right)=(U, V)=\left(r P, H_{2}\left(e\left(H_{1}(W), A_{p u b}\right)^{r}\right)\right)
$$

Test Output yes, iff $V=H_{2}\left(e\left(T_{W}, U\right)\right)$.

Lemma

Under the BDH assumption, the above scheme is semantically secure against chosen keyword attacks in the random oracle model.

Bilinear Ring Signatures

Boneh, Gentry, Lynn, Shacham

Idea: A ring signature allows to sign a document on behalf of a group without revealing the identity of the signer while guaranteeing the correctness of the signature.

Bilinear Ring Signatures

Let $e(.,):. \mathcal{G}_{1} \times \mathcal{G}_{2} \rightarrow \mathcal{G}_{T}$ be a bilinear map. Further, let $\psi():. \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ be a computable isomorphism, and $H():.\{0,1\}^{*} \rightarrow \mathcal{G}_{2}$ be a hash function.

KeyGen Let $\left\langle P_{i}\right\rangle=\mathcal{G}_{i}$ for $i=1,2, P_{2}=\psi\left(P_{1}\right)$.
Let $x_{i} \in \mathbb{Z}_{q}^{*}$ be the secret key and $V_{i}=x_{i} P_{1}$ be the public key of user $i=1, \ldots, n$.
Sign To sign message M, user j draws $a_{i} \in_{R} \mathbb{Z}_{q}^{*}$ for $i \neq j$, and outputs the signature $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where $\sigma_{j}=\frac{1}{x_{i}}\left(H(M)-\psi\left(\sum_{i \neq j} a_{i} V_{i}\right)\right)$ and $\sigma_{i}=a_{i} P_{2} \forall i \neq j$.
Verify The receiver accepts, iff $e\left(P_{1}, H(M)\right)=\prod_{i=1}^{n} e\left(V_{i}, \sigma_{i}\right)$.

Lemma

Under the Co-GDH assumption the above scheme unconditionally protects the signer's identity, and is resistent to forgery in the ROM.

Outline

Bilinear Pairings

Some Applications

Known Pairings

Elliptic Curves

Definition

Let \mathbb{K} be a finite field with char $\mathbb{K} \neq 2,3$. Let $\overline{\mathbb{K}}$ be the algebraic closure of \mathbb{K}, and let $a, b \in \overline{\mathbb{K}}$.
An elliptic curve \mathcal{E} is given by ∞ and all $(x, y) \in \overline{\mathbb{K}}^{2}$ satisfying

$$
y^{2}=x^{3}+a x+b
$$

Lemma

With the tangent-and-chord-method, \mathcal{E} becomes a group.
Some further notation:

- $\mathcal{E}[n]=\{P \in \mathcal{E}: n P=\infty\}$
- $\overline{\mathbb{K}}[\mathcal{E}]=\overline{\mathbb{K}}[x, y] /\left(y^{2}-x^{3}-a x^{2}-b\right)$ (ring)
- $\overline{\mathbb{K}}(\mathcal{E})=\left\{\frac{f(x, y)}{g(x, y)}: f, g \in \overline{\mathbb{K}}[\mathcal{E}]\right\}$ (field)

Zeros and Poles

For every $P \in \mathcal{E}$ there exists $u \in \overline{\mathbb{K}}(\mathcal{E})$ with $u(P)=0$ such that for every $f \in \overline{\mathbb{K}}(\mathcal{E})$ there is $d \in \mathbb{Z}$ such that $f u^{d}$ is defined and $\neq 0$.

Definition

For $P \in \mathcal{E}$ and $f \in \overline{\mathbb{K}}(\mathcal{E})$ we define $\operatorname{ord}_{p}(f)=d$.
If $d>0$ we call P a zero of multiplicity d.
If $d<0$ we call P a pole of multiplicity $-d$.

Divisors

Definition

A divisor D is a formal sum $D=\sum_{P \in \mathcal{E}} n_{P}(P)$.

- support of $D: \operatorname{supp}(D)=\left\{P \in \mathcal{E}: n_{P} \neq 0\right\}$
- degree of $D: \operatorname{deg}(D)=\sum_{P \in \mathcal{E}} n_{P}$
- for $f \in \overline{\mathbb{K}}(\mathcal{E})$ we set $\operatorname{div}(f)=\sum_{P \in \mathcal{E}} \operatorname{ord}_{P}(f)(P)$
- we write $D_{1} \sim D_{2}: \Leftrightarrow \exists f \in \overline{\mathbb{K}}(\mathcal{E}): D_{1}=D_{2}+\operatorname{div}(f)$
- D is principal: $\Leftrightarrow \exists f \in K(\mathcal{E}): \operatorname{div}(f)=D$

Lemma

D is a principal divisor, iff $\operatorname{deg}(D)=0$ and $\sum_{P \in \mathcal{E}} n_{P} P=\infty$.

The Weil Pairing

Definition

For $\operatorname{gcd}(m, p)=1$ and $(S, T) \in \mathcal{E}[m] \times \mathcal{E}[m]$ let A, B be divisors with

- $\sum_{p \in \mathcal{E}} n_{A P}(P)=A \sim(S)-(\infty)$,
- $\sum_{p \in \mathcal{E}} n_{B P}(P)=B \sim(T)-(\infty)$, and
- $\operatorname{supp}(A) \cap \operatorname{supp}(B)=\emptyset$.

Let further $f_{A}, f_{B} \in \mathcal{E}(\overline{\mathbb{K}})$ such that $\operatorname{div}\left(f_{A}\right)=m A$ and $\operatorname{div}\left(f_{B}\right)=m B$.

Then the Weil pairing is defined by

$$
e_{W}: \mathcal{E}[m] \times \mathcal{E}[m] \rightarrow \mu_{m}:(S, T) \mapsto \frac{f_{A}(B)}{f_{B}(A)}
$$

where $f_{A}(B)=\prod_{P \in \operatorname{supp}(B)} f_{A}(P)^{n_{B P}}$ and similar for $f_{B}(A)$, and $\mu_{m} \subseteq \mathbb{K}$ denotes the set of $m^{\text {th }}$ roots of unity.

Comparison to Tate Pairing

- Tate pairing is much more complex to understand.
- Weil pairing has more restrictive conditions on curves (in theory).
- Weil pairing is twice as expensive as Tate pairing.
- Tate pairing maps to equivalence classes, not to single values.

Parameter Selection

- Let $q=p^{i}$ for $p \in \mathbb{P}$ and let \mathcal{E} be defined over \mathbb{F}_{q}.
- Let $m \in \mathbb{P}$ and let k be the least integer with $\mathcal{E}[m] \subseteq \mathcal{E}\left(\mathbb{F}_{q^{k}}\right)$.
- Then $\mathcal{G}_{1}=\mathcal{G}_{2}=\mathcal{E}[m]$ and $\mu_{m} \subseteq \mathbb{F}_{q^{k}}$.
- m, k should be large enough for DLP to be hard in $\mathcal{E}[m]$ and $\mathbb{F}_{q^{k}}$.
- k should be small enough for computations in $\mathbb{F}_{q^{k}}$ to be efficient.
- The smaller q, the shorter are elements of $\mathcal{E}[m]$.
- For 128 bit security: $m \approx 2^{256}, q^{k} \approx 2^{3072}$.
- Super-singular elliptic curves $\left(q+1-\# \mathcal{E}\left(\mathbb{F}_{q}\right)=0 \bmod p\right)$ always have embedding degree ≤ 6.
- Elliptic curves for any k and any m can be generated using the Cocks-Pinch method.

Efficiency of Pairing Based Cryptography

- For 128 bit security one should (very roughly) use parameters such that:

	$\|\log (q)\|$	$\left\|P \in \mathcal{G}_{1}\right\|$	$\left\|R \in \mathcal{G}_{2}\right\|$	$\left\|T \in \mathcal{G}_{T}\right\|$
$\mathcal{G}_{1}=\mathcal{G}_{2}$	512	512	512	$6 \cdot 512$
$\mathcal{G}_{1} \neq \mathcal{G}_{2}$	256	256	3.256	6.256

- Costs for computing pairings is of the same order as exponentiation (cubic).
- A single pairing costs as much as 4 to 20 mod-exps.

Things are Getting Better

CPU Cycles per Pairing
(all implementations optimized for optimal Ate pairing on Core i5/i7)

IOS Press 2008	$10^{\prime} 0000^{\prime} 000$
LATINCRYPT 2010	$4{ }^{\prime} 380^{\prime} 000$
PAIRING 2010	$2^{\prime} 333^{\prime} 000$
EUROCRYPT 2011	$1^{\prime} 688^{\prime} 000$

