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First of all ...

2002 : 652
2003 : 815
2004 : 1’113
2005 : 1’398 More than
2006 : 1’650 11′000
2007 : 1’655 publications
2008 : 1’779 within 10 years!
2009 : 1’288
2010 : 525
2011 : 94
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Two-Party Key Exchange
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� Standard Diffie-Hellman key exchange on elliptic curves.
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Two-Round Three-Party Key Exchange
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Two-Round Three-Party Key Exchange
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abcP
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� Assumed to be as secure as Diffie-Hellman

� Two synchronized messages per party.
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What we Want to Have
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Bilinear Pairings
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Bilinear Pairings

Definition

For the whole talk let G1,G2,GT be groups of prime order q.

Definition

A mapping e(., .) : G1 × G2 → GT is called a (bilinear) pairing, if the
following conditions are satisfied:

Bilinearity: e(P + Q,R) = e(P,R)e(Q,R) ∀P,Q ∈ G1,∀R ∈ G2,
e(P,R + S) = e(P,R)e(R,S) ∀P ∈ G1,∀R, S ∈ G2.

Non-degeneracy: ∃(P,Q) ∈ G1 × G2 : e(P,R) 6= 1.

Computability: e(., .) can be evaluated efficiently.
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Bilinear Pairings

Basic Properties

Lemma

Let e(., .) : G1 × G2 → GT be a bilinear pairing. Then the following
holds for all P,Q ∈ G1 and R, S ∈ G2:

(a) e(P,∞) = e(∞,R) = 1,

(b) e(P,−R) = e(−P,R) = e(P,R)−1,

(c) e(aP, bR) = e(P,R)ab for all a, b ∈ Z,

(d) 〈P〉 = G1 and 〈R〉 = G2 ⇒ 〈e(P,R)〉 = GT ,

(e) f (X ) = e(X ,R) is a homomorphisms from G1 to GT , and an
isomorphism for R 6=∞.

(f) For an isomorphism ψ : G1 → G2, e(P, ψ(Q)) = e(Q, ψ(P)).

From now on, we assume that G1 = G2.
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Bilinear Pairings

Bilinear Diffie-Hellman Assumptions

Definition (Bilinear Diffie-Hellman (BDH) Assumption)

Given: (P, aP, bP, cP) with a, b, c ∈R Z∗q
Required: e(P,P)abc

The BDH assumption says that the advantage of every PPT
algorithm is at most negligibly better than guessing.

Definition (Decisional BDH (DBDH) Assumption)

Given: (P, aP, bP, cP, r) with a, b, c ∈R Z∗q, and r

{
∈R GT
= e(P,P)abc

Required: e(P,P)abc
?
= r

The DBDH assumption says that the success probability of every
PPT algorithm is at most negligibly larger than 1/2.
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Bilinear Pairings

Co-Gap Diffie-Hellman Groups
Let P ∈ G1, R ∈ G2 be generators, and ψ(.) : G1 → G2 be an
isomorphism with ψ(P) = R.

Definition (Co-Diffie-Hellman (Co-DH) Problems)

� Decisional Co-DH (D-Co-DH) Problem

Given: (P,R, aP, bR, cR) with a, b ∈R Z∗q and c

{
∈R G2
= ab mod q

Required: ab
?
= c mod q

� Computational Co-DH (C-Co-DH) Problem
Given: (P,R, aP, bR) with a, b ∈R Z∗q
Required: abR

Definition (Co-Gap Diffie-Hellman (Co-GDH) Groups)

G1,G2 are said to be Co-GDH groups if D-Co-DH can be solved
efficiently but C-Co-DH can not.
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Bilinear Pairings

Other Problems

� k-Bilinear Diffie-Hellman Inversion:
Given P, aP, a2P, . . . , akP, compute e(P,P)

1
a .

� k-Decisional Bilinear Diffie-Hellman Inversion:
Distinguish P, aP, a2P, . . . , akP, e(P,P)

1
a from

P, aP, a2P, . . . , akP, e(P,P)b

� Decisional Hash Bilinear Diffie-Hellman Problem:
Given P, aP, bP, cP, r and a hash function H decide whether
r = H(e(P,P)abc).

� . . .
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Some Applications
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Some Applications

� Encryption schemes
� (Hierarchical) ID-based encryption
� Searchable public key encryption
� (ID-based) Threshold decryption

� Signature schemes
� Blind signatures
� Short signatures
� Ring signatures
� Verifiable committed signatures (≈non-interactive fair exchange)
� (Hierarchical) ID-based variants of the above
� Threshold signatures

� Miscellaneous
� Key exchange
� Signcryption
� Identification schemes
� (ID-based) chameleon hashes
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Some Applications

One-Round Three-Party Key Exchange
Joux

aP

bPcP

e(P,P)abc bP

cPaP

e(P,P)abc

e(P,P)abc

� No synchronization needed any more, thus “one round ”.
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Some Applications

Short Signatures
Boneh, Lynn, Shacham

Let e(., .) : G1 × G1 → GT be a bilinear pairing and
H(.) : {0, 1}∗ → G1 a hash function.

KeyGen Let 〈P1〉 = G1.
Let x ∈R Z∗q be the secret key, and Y = xP1 be the
public key.

Sign To sign a message M, the user computes σ = xH(M).

Verifiy The receiver accepts, iff (P1,Y ,H(M), σ) is a
Diffie-Hellman tuple, i.e., iff e(P1, σ) = e(Y ,H(M)).

Lemma

If G1 is a GDH group, the scheme is secure against existential forgery
under adaptive chosen message attacks in the ROM.
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Some Applications

Searchable Public Key Encryption
Boneh, Crescenzo, Ostrovsky, Persiano

Idea: add a list of encrypted tags to a ciphertext such that, e.g., a
mail gateway can route an email to the right device. That is, for a list
of tags W1, . . . ,Wn, Bob sends

EApub
(M)‖S(Apub,W1)‖ . . . ‖S(Apub,Wn)

to Alice.
The gateway can check whether Wi = W for a predefined key word,
but does not learn anything if this is not the case.
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Some Applications

Searchable Public Key Encryption

Let e(., .) : G1 × G1 → GT be a bilinear map, and let
H1(.) : {0, 1}∗ → G1, H2(.) : G2 → {0, 1}l be hash functions.

KeyGen Let P be a public generator of G1, and let s ∈ Z∗q be
Alice’s secret key. Her public key is given by Apub = sP.
Give TW = sH1(W ) as a trapdoor to the gateway.

Encrypt Draw r ∈R Z∗q and set
S(Apub,W ) = (U,V ) = (rP,H2(e(H1(W ),Apub)r )).

Test Output yes, iff V = H2(e(TW ,U)).

Lemma

Under the BDH assumption, the above scheme is semantically secure
against chosen keyword attacks in the random oracle model.
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Some Applications

Bilinear Ring Signatures
Boneh, Gentry, Lynn, Shacham

Idea: A ring signature allows to sign a document on behalf of a group
without revealing the identity of the signer while guaranteeing the
correctness of the signature.
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Some Applications

Bilinear Ring Signatures

Let e(., .) : G1 × G2 → GT be a bilinear map. Further, let
ψ(.) : G1 → G2 be a computable isomorphism, and
H(.) : {0, 1}∗ → G2 be a hash function.

KeyGen Let 〈Pi 〉 = Gi for i = 1, 2, P2 = ψ(P1).
Let xi ∈ Z∗q be the secret key and Vi = xiP1 be the
public key of user i = 1, . . . , n.

Sign To sign message M, user j draws ai ∈R Z∗q for i 6= j ,
and outputs the signature σ = (σ1, . . . , σn), where

σj = 1
xi

(
H(M)− ψ(

∑
i 6=j aiVi )

)
and σi = aiP2 ∀i 6= j .

Verify The receiver accepts, iff e(P1,H(M)) =
∏n

i=1 e(Vi , σi ).

Lemma

Under the Co-GDH assumption the above scheme unconditionally
protects the signer’s identity, and is resistent to forgery in the ROM.
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Known Pairings

Elliptic Curves

Definition

Let K be a finite field with charK 6= 2, 3. Let K be the algebraic
closure of K, and let a, b ∈ K.

An elliptic curve E is given by ∞ and all (x , y) ∈ K2
satisfying

y2 = x3 + ax + b

Lemma

With the tangent-and-chord-method, E becomes a group.

Some further notation:

� E [n] = {P ∈ E : nP =∞}
� K[E ] = K[x , y ]/(y2 − x3 − ax2 − b) (ring)

� K(E) =
{

f (x ,y)
g(x ,y) : f , g ∈ K[E ]

}
(field)
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Known Pairings

Zeros and Poles

For every P ∈ E there exists u ∈ K(E) with u(P) = 0 such that for
every f ∈ K(E) there is d ∈ Z such that fud is defined and 6= 0.

Definition

For P ∈ E and f ∈ K(E) we define ordP(f ) = d .
If d > 0 we call P a zero of multiplicity d .
If d < 0 we call P a pole of multiplicity −d .
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Known Pairings

Divisors

Definition

A divisor D is a formal sum D =
∑

P∈E nP(P).

� support of D: supp(D) = {P ∈ E : nP 6= 0}
� degree of D: deg(D) =

∑
P∈E nP

� for f ∈ K(E) we set div(f ) =
∑

P∈E ordP(f )(P)

� we write D1 ∼ D2: ⇔ ∃f ∈ K(E) : D1 = D2 + div(f )

� D is principal: ⇔ ∃f ∈ K (E) : div(f ) = D

Lemma

D is a principal divisor, iff deg(D) = 0 and
∑

P∈E nPP =∞.

May 24, 2011 | 24 of 29



Known Pairings

The Weil Pairing

Definition

For gcd(m, p) = 1 and (S ,T ) ∈ E [m]×E [m] let A,B be divisors with

�
∑

p∈E nAP(P) = A ∼ (S)− (∞),

�
∑

p∈E nBP(P) = B ∼ (T )− (∞), and

� supp(A) ∩ supp(B) = ∅.
Let further fA, fB ∈ E(K) such that div(fA) = mA and div(fB) = mB.

Then the Weil pairing is defined by

eW : E [m]× E [m]→ µm : (S ,T ) 7→ fA(B)

fB(A)
,

where fA(B) =
∏

P∈supp(B) fA(P)nBP and similar for fB(A), and

µm ⊆ K denotes the set of mth roots of unity.
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Known Pairings

Comparison to Tate Pairing

� Tate pairing is much more complex to understand.

� Weil pairing has more restrictive conditions on curves (in theory).

� Weil pairing is twice as expensive as Tate pairing.

� Tate pairing maps to equivalence classes, not to single values.
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Known Pairings

Parameter Selection

� Let q = pi for p ∈ P and let E be defined over Fq.

� Let m ∈ P and let k be the least integer with E [m] ⊆ E(Fqk ).

� Then G1 = G2 = E [m] and µm ⊆ Fqk .

� m, k should be large enough for DLP to be hard in E [m] and Fqk .

� k should be small enough for computations in Fqk to be efficient.

� The smaller q, the shorter are elements of E [m].

� For 128 bit security: m ≈ 2256, qk ≈ 23072.

� Super-singular elliptic curves (q + 1−#E(Fq) = 0 mod p) always
have embedding degree ≤ 6.

� Elliptic curves for any k and any m can be generated using the
Cocks-Pinch method.
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Known Pairings

Efficiency of Pairing Based Cryptography

� For 128 bit security one should (very roughly) use parameters such
that:

| log(q)| |P ∈ G1| |R ∈ G2| |T ∈ GT |
G1 = G2 512 512 512 6 · 512
G1 6= G2 256 256 3 · 256 6 · 256

� Costs for computing pairings is of the same order as
exponentiation (cubic).

� A single pairing costs as much as 4 to 20 mod-exps.
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Known Pairings

Things are Getting Better
CPU Cycles per Pairing

(all implementations optimized for optimal Ate pairing on Core i5/i7)

IOS Press 2008 10’000’000
LATINCRYPT 2010 4’380’000
PAIRING 2010 2’333’000
EUROCRYPT 2011 1’688’000
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