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First of all ...

2002 : 652

2003 : 815

2004 : 1'113

2005 : 1'398 More than
2006 : 1'650 11000
2007 : 1'655 publications
2008 : 1'779 within 10 years!
2009 : 1'288

2010 : 525

2011 : 94
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Two-Party Key Exchange

m Standard Diffie-Hellman key exchange on elliptic curves.
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Two-Round Three-Party Key Exchange
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Two-Round Three-Party Key Exchange
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® Assumed to be as secure as Diffie-Hellman

® Two synchronized messages per party.
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What we Want to Have
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Bilinear Pairings
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Bilinear Pairings

Definition

For the whole talk let G1,G>, G1 be groups of prime order q.

Definition
A mapping e(.,.) : G1 X Go — G is called a (bilinear) pairing, if the
following conditions are satisfied:
Bilinearity: e(P + Q,R) = e(P,R)e(Q,R) VP,Q € G1,VR € G,
e(P,R+S)=-e(P,R)e(R,S) VP e€G,VR,S € G>.

Non-degeneracy: 3(P, Q) € G1 x G2 : (P, R) # 1.

Computability: e(.,.) can be evaluated efficiently.
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Basic Properties

Lemma

Let e(.,.) : G1 X Go — G be a bilinear pairing. Then the following
holds for all P, Q € Gy and R, S € G»:

(a) e(P,00) = e(o0,R) =1,

(b) e(P,—R) =e(—P,R) =e(P,R)1,

(c) e(aP,bR) = e(P,R) for all a,b € Z,

(d) (P)=Grand (R) =G> = (e(P,R))=0r,

(e) f(X) = e(X,R) is a homomorphisms from G to Gr, and an

isomorphism for R = cc.

(f) For an isomorphism 1) : G1 — Ga, e(P,¥(Q)) = e(Q, ¥(P)).

From now on, we assume that G; = G».
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Bilinear Diffie-Hellman Assumptions

Definition (Bilinear Diffie-Hellman (BDH) Assumption)

Given: (P, aP,bP, cP) with a, b, c €r Z

Required: e(P, P)2b¢

The BDH assumption says that the advantage of every PPT
algorithm is at most negligibly better than guessing.

Definition (Decisional BDH (DBDH) Assumption)

N . « €ERUT
Given: (P, aP, bP,cP,r) with a, b, c €g Z}, and r{ — o(P, P)?bc
Required: e(P, P)b¢ Zy
The DBDH assumption says that the success probability of every
PPT algorithm is at most negligibly larger than 1/2.
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Bilinear Pairings

Co-Gap Diffie-Hellman Groups

Let P € G1, R € Gy be generators, and 9(.) : G1 — G» be an
isomorphism with ¥(P) = R.

Definition (Co-Diffie-Hellman (Co-DH) Problems)

= Decisional Co-DH (D-Co-DH) Problem

- _ . €rR G2
Given: (P, R, aP, bR, cR) with a, b €g Z and C{ — &b med @

Required: ab 2 ¢ mod q

= Computational Co-DH (C-Co-DH) Problem
Given: (P, R,aP,bR) with a, b €g Z
Required: abR

Definition (Co-Gap Diffie-Hellman (Co-GDH) Groups)

G1,G> are said to be Co-GDH groups if D-Co-DH can be solved
efficiently but C-Co-DH can not.
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Other Problems

m k-Bilinear Diffie-Hellman Inversion:
Given P,aP,a’P,...,a"P, compute e(P, P)
m k-Decisional Bilinear Diffie-Hellman Inversion:
Distinguish P,aP,a’P,...,a*P, e(P, P)% from
P,aP,a’P,...,a"P e(P, P)®
m Decisional Hash Bilinear Diffie-Hellman Problem:
Given P, aP, bP, cP, r and a hash function H decide whether

r = H(e(P, P)®°).

1
a,
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Some Applications
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Some Applications

® Encryption schemes

O (Hierarchical) ID-based encryption
O Searchable public key encryption
0O (ID-based) Threshold decryption

® Signature schemes

Blind signatures

Short signatures

Ring signatures

Verifiable committed signatures (aznon-interactive fair exchange)
(Hierarchical) ID-based variants of the above

Threshold signatures

[m]

O 0Oooao

iscellaneous

Key exchange

Signcryption

Identification schemes
(ID-based) chameleon hashes
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One-Round Three-Party Key Exchange

Joux

>, @
. p—
e(P.P)e— ‘ bP .—> e(P,P)e

® No synchronization needed any more, thus “one round”.
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Some Applications

Short Signatures
Boneh, Lynn, Shacham

Let e(.,.) : G1 X G1 — G be a bilinear pairing and
H(.): {0,1}* — G1 a hash function.
KeyGen Let (P1) = Gi.
Let x € ZZ be the secret key, and Y = xP; be the
public key.
Sign To sign a message M, the user computes o = xH(M).
Verifiy The receiver accepts, iff (P1, Y, H(M),0) is a

Diffie-Hellman tuple, i.e., iff e(P1,0) = e(Y, H(M)).

If G1 is a GDH group, the scheme is secure against existential forgery
under adaptive chosen message attacks in the ROM.
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Searchable Public Key Encryption

Boneh, Crescenzo, Ostrovsky, Persiano

Idea: add a list of encrypted tags to a ciphertext such that, e.g., a
mail gateway can route an email to the right device. That is, for a list
of tags Wi, ..., W,, Bob sends

EApub(M)HS(APUb’ WI)H o HS(Apub, W,,)

to Alice.
The gateway can check whether W; = W for a predefined key word,
but does not learn anything if this is not the case.

May 24, 2011 | 17 of 29 LN



Searchable Public Key Encryption

Let e(.,.) : G1 X G1 — G be a bilinear map, and let
Hi(.) : {0,1}* — G1, Ha(.) : G2 — {0,1} be hash functions.
KeyGen Let P be a public generator of G1, and let s € Zg be
Alice’s secret key. Her public key is given by Ap,, = sP.
Give Ty = sH1(W) as a trapdoor to the gateway.
Encrypt Draw r €g Zg and set
S(Apub, W) = (U, V) = (rP, Ha(e(HL(W), Apup)"))-
Test Output yes, iff V = Ha(e(Tw, U)).

Under the BDH assumption, the above scheme is semantically secure
against chosen keyword attacks in the random oracle model.
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Some Applications

Bilinear Ring Signatures
Boneh, Gentry, Lynn, Shacham

Idea: A ring signature allows to sign a document on behalf of a group
without revealing the identity of the signer while guaranteeing the
correctness of the signature.
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Bilinear Ring Signatures

Let e(.,.) : G1 X Go — G be a bilinear map. Further, let
¥(.) : G1 — Go be a computable isomorphism, and
H(.):{0,1}* — G» be a hash function.

KeyGen Let (P;) =G for i = 1,2, P, = 9(P1).
Let x; € Z’[I be the secret key and V; = x;P; be the

public key of user i =1,...,n
Sign To sign message M, user j draws a; € Zg for i # j,
and outputs the signature 0 = (01, ...,0,), where

9 =% ( (M) = (X a,-\/,-)) and o; = a;Py ¥i # J.
Verify The receiver accepts, iff e(P1, H(M)) = []7_; e(Vi, 0}).

Under the Co-GDH assumption the above scheme unconditionally
protects the signer’s identity, and is resistent to forgery in the ROM.
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Known Pairings
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Known Pairings

Elliptic Curves

Definition

Let K be a finite field with char K # 2, 3. Let K be the algebraic
closure of K, and let a, b € K.

An elliptic curve & is given by co and all (x,y) € K satisfying

yv2=x3+ax+b

With the tangent-and-chord-method, £ becomes a group.

Some further notation:

B En={Pec&:nP=o0}

» K[€] = KIx, y]/(y* = x> — ax® — b) (ring)
" (&) = {;gx’yg fge K[g]} (field)
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Zeros and Poles

For every P € & there exists u € K(&) with u(P) = 0 such that for
every f € K(&) there is d € Z such that fu? is defined and # 0.

Definition

For P € € and f € K(E) we define ordp(f) = d.
If d > 0 we call P a zero of multiplicity d.
If d < 0 we call P a pole of multiplicity —d.
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Known Pairings

Divisors

Definition
A divisor D is a formal sum D = %", np(P).

® support of D: supp(D) = {P € £: np # 0}

degree of D: deg(D) = ) pce np

for f € K(€) we set div(f) = > peg ordp(f)(P)

® we write D1 ~ Dy: & 3f € K(E) : Dy = Dy + div(f)
® D is principal: < 3f € K(€) : div(f) =D

D is a principal divisor, iff deg(D) = 0 and ) p e npP = oo. \

May 24, 2011 | 24 of 29 0999 -
o @




The Weil Pairing

Definition

For gcd(m, p) =1 and (S, T) € E[m] x £[m] let A, B be divisors with
" D pee 1ap(P) = A~ (S) — (0),

" > pee nep(P) =B~ (T) = (c0), and

= supp(A) Nsupp(B ) =0.

Let further f4, fg € £(K) such that div(f4) = mA and div(fg) = mB.

Then the Weil pairing is defined by

fa(B)

eW:S[m]XE[m]%um:(S,T)HMa

where fa(B) = [ [ pesupp(5) fa(P)"" and similar for fz(A), and
pm C K denotes the set of mt" roots of unity.
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Comparison to Tate Pairing

Tate pairing is much more complex to understand.

Weil pairing has more restrictive conditions on curves (in theory).

Weil pairing is twice as expensive as Tate pairing.

® Tate pairing maps to equivalence classes, not to single values.
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Parameter Selection

m Let g =p' for p € P and let £ be defined over Fy.

® Let m € P and let k be the least integer with £[m] C £(F j«).

® Then Gy = Gy = &[m] and iy C F .

= m, k should be large enough for DLP to be hard in £[m] and T .
® k should be small enough for computations in F « to be efficient.
® The smaller g, the shorter are elements of £[m].

m For 128 bit security: m ~ 2256, gk ~ 23072,

® Super-singular elliptic curves (g +1 — #&E(Fg) =0 mod p) always
have embedding degree < 6.

m Elliptic curves for any k and any m can be generated using the
Cocks-Pinch method.
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Efficiency of Pairing Based Cryptography

® For 128 bit security one should (very roughly) use parameters such

that:
| [log(q)l [P€Gi| |ReG| |Tegr
G1=G» 512 512 512 6512
Gi1 # G 256 256 3256 6 - 256

m Costs for computing pairings is of the same order as
exponentiation (cubic).
® A single pairing costs as much as 4 to 20 mod-exps.
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Known Pairings

Things are Getting Better
CPU Cycles per Pairing

(all implementations optimized for optimal Ate pairing on Core i5/i7)

|OS Press 2008 10'000'000
LATINCRYPT 2010 | 4'380'000
PAIRING 2010 2'333'000

EUROCRYPT 2011 | 1'688'000
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