Pairing Based Cryptography

An Introduction

Seminar, e-Voting Group, BFH

Biel/Bienne, May 24, 2011

Stephan Krenn¹

¹Bern University of Applied Sciences

First of all ...

2002 : 652 2003 : 815 2004 : 1'113 2005 : 1'398 2006 : 1'650 2007 : 1'655 2008 : 1'779 2009 : 1'288 2010 : 525 2011 : 94

More than **11'000** publications within 10 years!

Two-Party Key Exchange

Standard Diffie-Hellman key exchange on elliptic curves.

Two-Round Three-Party Key Exchange

Two-Round Three-Party Key Exchange

- Assumed to be as secure as Diffie-Hellman
- Two synchronized messages per party.

What we Want to Have

۵

Outline

Bilinear Pairings

Some Applications

Known Pairings

May 24, 2011 | 7 of 29

Definition

For the whole talk let $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_T$ be groups of prime order q.

Definition

A mapping e(.,.): $\mathcal{G}_1 \times \mathcal{G}_2 \to \mathcal{G}_T$ is called a *(bilinear) pairing*, if the following conditions are satisfied:

$$\begin{array}{ll} \mbox{Bilinearity:} & e(P+Q,R) = e(P,R)e(Q,R) & \forall P,Q \in \mathcal{G}_1, \forall R \in \mathcal{G}_2, \\ & e(P,R+S) = e(P,R)e(R,S) & \forall P \in \mathcal{G}_1, \forall R,S \in \mathcal{G}_2. \end{array}$$

Non-degeneracy: $\exists (P, Q) \in \mathcal{G}_1 \times \mathcal{G}_2 : e(P, R) \neq 1.$

Computability: e(.,.) can be evaluated efficiently.

Basic Properties

Lemma

Let $e(.,.): \mathcal{G}_1 \times \mathcal{G}_2 \to \mathcal{G}_T$ be a bilinear pairing. Then the following holds for all $P, Q \in G_1$ and $R, S \in G_2$: (a) $e(P, \infty) = e(\infty, R) = 1$, (b) $e(P, -R) = e(-P, R) = e(P, R)^{-1}$, (c) $e(aP, bR) = e(P, R)^{ab}$ for all $a, b \in \mathbb{Z}$, (d) $\langle P \rangle = \mathcal{G}_1$ and $\langle R \rangle = \mathcal{G}_2 \implies \langle e(P, R) \rangle = \mathcal{G}_T$, (e) f(X) = e(X, R) is a homomorphisms from \mathcal{G}_1 to \mathcal{G}_T , and an isomorphism for $R \neq \infty$. (f) For an isomorphism $\psi : \mathcal{G}_1 \to \mathcal{G}_2$, $e(P, \psi(Q)) = e(Q, \psi(P))$.

From now on, we assume that $\mathcal{G}_1 = \mathcal{G}_2$.

Bilinear Diffie-Hellman Assumptions

Definition (Bilinear Diffie-Hellman (BDH) Assumption)

Given: (P, aP, bP, cP) with $a, b, c \in_R \mathbb{Z}_q^*$ Required: $e(P, P)^{abc}$

The *BDH assumption* says that the advantage of every PPT algorithm is at most negligibly better than guessing.

Definition (Decisional BDH (DBDH) Assumption)

Given:
$$(P, aP, bP, cP, r)$$
 with $a, b, c \in_R \mathbb{Z}_q^*$, and $r \begin{cases} \in_R \mathcal{G}_T \\ = e(P, P)^{abc} \end{cases}$

Required: $e(P, P)^{abc} \stackrel{?}{=} r$

The *DBDH* assumption says that the success probability of every PPT algorithm is at most negligibly larger than 1/2.

Bilinear Pairings

Co-Gap Diffie-Hellman Groups

Let $P \in \mathcal{G}_1$, $R \in \mathcal{G}_2$ be generators, and $\psi(.) : \mathcal{G}_1 \to \mathcal{G}_2$ be an isomorphism with $\psi(P) = R$.

Definition (Co-Diffie-Hellman (Co-DH) Problems)

Decisional Co-DH (D-Co-DH) Problem

Given: (P, R, aP, bR, cR) with $a, b \in_R \mathbb{Z}_q^*$ and $c \begin{cases} \in_R \mathcal{G}_2 \\ = ab \mod q \end{cases}$

Required: $ab \stackrel{?}{=} c \mod q$

• Computational Co-DH (C-Co-DH) Problem Given: (P, R, aP, bR) with $a, b \in_R \mathbb{Z}_q^*$ Required: abR

Definition (Co-Gap Diffie-Hellman (Co-GDH) Groups)

 $\mathcal{G}_1, \mathcal{G}_2$ are said to be *Co-GDH groups* if D-Co-DH can be solved efficiently but C-Co-DH can not.

Other Problems

- k-Bilinear Diffie-Hellman Inversion: Given P, aP, a²P,..., a^kP, compute e(P, P)^{1/a}.
- k-Decisional Bilinear Diffie-Hellman Inversion: Distinguish P, aP, a²P,..., a^kP, e(P, P)^{1/a} from P, aP, a²P,..., a^kP, e(P, P)^b
- Decisional Hash Bilinear Diffie-Hellman Problem: Given P, aP, bP, cP, r and a hash function H decide whether $r = H(e(P, P)^{abc}).$

. . .

Outline

Bilinear Pairings

Some Applications

Known Pairings

- Encryption schemes
 - □ (Hierarchical) ID-based encryption
 - □ Searchable public key encryption
 - \square (ID-based) Threshold decryption

Signature schemes

- Blind signatures
- □ Short signatures
- Ring signatures
- \Box Verifiable committed signatures (\approx non-interactive fair exchange)
- □ (Hierarchical) ID-based variants of the above
- Threshold signatures

Miscellaneous

- □ Key exchange
- Signcryption
- Identification schemes
- □ (ID-based) chameleon hashes

One-Round Three-Party Key Exchange

Joux

• No synchronization needed any more, thus "one round".

Short Signatures

Boneh, Lynn, Shacham

Let e(.,.): $\mathcal{G}_1 \times \mathcal{G}_1 \to \mathcal{G}_T$ be a bilinear pairing and H(.): $\{0,1\}^* \to \mathcal{G}_1$ a hash function. KeyGen Let $\langle P_1 \rangle = \mathcal{G}_1$. Let $x \in_R \mathbb{Z}_q^*$ be the secret key, and $Y = xP_1$ be the public key. Sign To sign a message M, the user computes $\sigma = xH(M)$. Verifiy The receiver accepts, iff $(P_1, Y, H(M), \sigma)$ is a Diffie-Hellman tuple, i.e., iff $e(P_1, \sigma) = e(Y, H(M))$.

Lemma

If G_1 is a GDH group, the scheme is secure against existential forgery under adaptive chosen message attacks in the ROM.

Searchable Public Key Encryption

Boneh, Crescenzo, Ostrovsky, Persiano

Idea: add a list of encrypted tags to a ciphertext such that, e.g., a mail gateway can route an email to the right device. That is, for a list of tags W_1, \ldots, W_n , Bob sends

$$E_{A_{pub}}(M) \| S(A_{pub}, W_1) \| \dots \| S(A_{pub}, W_n)$$

to Alice.

The gateway can check whether $W_i = W$ for a predefined key word, but does not learn anything if this is not the case.

Searchable Public Key Encryption

Let $e(.,.): \mathcal{G}_1 \times \mathcal{G}_1 \to \mathcal{G}_T$ be a bilinear map, and let $H_1(.): \{0,1\}^* \to \mathcal{G}_1, H_2(.): \mathcal{G}_2 \to \{0,1\}^I$ be hash functions.

KeyGen Let P be a public generator of \mathcal{G}_1 , and let $s \in \mathbb{Z}_q^*$ be Alice's secret key. Her public key is given by $A_{pub} = sP$. Give $T_W = sH_1(W)$ as a trapdoor to the gateway.

Encrypt Draw $r \in_R \mathbb{Z}_q^*$ and set $S(A_{pub}, W) = (U, V) = (rP, H_2(e(H_1(W), A_{pub})^r)).$ Test Output yes, iff $V = H_2(e(T_W, U)).$

Lemma

Under the BDH assumption, the above scheme is semantically secure against chosen keyword attacks in the random oracle model.

Bilinear Ring Signatures

Boneh, Gentry, Lynn, Shacham

Idea: A ring signature allows to sign a document on behalf of a group without revealing the identity of the signer while guaranteeing the correctness of the signature.

Bilinear Ring Signatures

Let $e(.,.): \mathcal{G}_1 \times \mathcal{G}_2 \to \mathcal{G}_T$ be a bilinear map. Further, let $\psi(.): \mathcal{G}_1 \to \mathcal{G}_2$ be a computable isomorphism, and $H(.): \{0,1\}^* \to \mathcal{G}_2$ be a hash function.

- KeyGen Let $\langle P_i \rangle = \mathcal{G}_i$ for $i = 1, 2, P_2 = \psi(P_1)$. Let $x_i \in \mathbb{Z}_q^*$ be the secret key and $V_i = x_i P_1$ be the public key of user i = 1, ..., n.
 - Sign To sign message M, user j draws $a_i \in_R \mathbb{Z}_q^*$ for $i \neq j$, and outputs the signature $\sigma = (\sigma_1, \dots, \sigma_n)$, where $\sigma_j = \frac{1}{x_i} \left(H(M) - \psi(\sum_{i \neq j} a_i V_i) \right)$ and $\sigma_i = a_i P_2 \quad \forall i \neq j$.

Verify The receiver accepts, iff $e(P_1, H(M)) = \prod_{i=1}^n e(V_i, \sigma_i)$.

Lemma

Under the Co-GDH assumption the above scheme unconditionally protects the signer's identity, and is resistent to forgery in the ROM.

May 24, 2011 | 20 of 29

Outline

Bilinear Pairings

Some Applications

Known Pairings

May 24, 2011 | 21 of 29

Elliptic Curves

Definition

Let \mathbb{K} be a finite field with char $\mathbb{K} \neq 2, 3$. Let $\overline{\mathbb{K}}$ be the algebraic closure of \mathbb{K} , and let $a, b \in \overline{\mathbb{K}}$.

An elliptic curve $\mathcal E$ is given by ∞ and all $(x,y)\in\overline{\mathbb K}^2$ satisfying

$$y^2 = x^3 + ax + b$$

Lemma

With the tangent-and-chord-method, \mathcal{E} becomes a group.

Some further notation:

•
$$\mathcal{E}[n] = \{P \in \mathcal{E} : nP = \infty\}$$

• $\overline{\mathbb{K}}[\mathcal{E}] = \overline{\mathbb{K}}[x, y]/(y^2 - x^3 - ax^2 - b) \text{ (ring)}$
• $\overline{\mathbb{K}}(\mathcal{E}) = \left\{\frac{f(x, y)}{g(x, y)} : f, g \in \overline{\mathbb{K}}[\mathcal{E}]\right\} \text{ (field)}$

May 24, 2011 | 22 of 29

Zeros and Poles

For every $P \in \mathcal{E}$ there exists $u \in \overline{\mathbb{K}}(\mathcal{E})$ with u(P) = 0 such that for every $f \in \overline{\mathbb{K}}(\mathcal{E})$ there is $d \in \mathbb{Z}$ such that fu^d is defined and $\neq 0$.

Definition

For $P \in \mathcal{E}$ and $f \in \overline{\mathbb{K}}(\mathcal{E})$ we define $\operatorname{ord}_P(f) = d$. If d > 0 we call P a zero of multiplicity d. If d < 0 we call P a pole of multiplicity -d.

Divisors

Definition

- A divisor D is a formal sum $D = \sum_{P \in \mathcal{E}} n_P(P)$.
- support of D: supp $(D) = \{P \in \mathcal{E} : n_P \neq 0\}$
- degree of *D*: deg(*D*) = $\sum_{P \in \mathcal{E}} n_P$
- for $f \in \overline{\mathbb{K}}(\mathcal{E})$ we set $\operatorname{div}(f) = \sum_{P \in \mathcal{E}} \operatorname{ord}_P(f)(P)$
- we write $D_1 \sim D_2$: $\Leftrightarrow \exists f \in \overline{\mathbb{K}}(\mathcal{E}) : D_1 = D_2 + \operatorname{div}(f)$
- D is principal: $\Leftrightarrow \exists f \in K(\mathcal{E}) : \operatorname{div}(f) = D$

Lemma

D is a principal divisor, iff deg(D) = 0 and $\sum_{P \in \mathcal{E}} n_P P = \infty$.

....

The Weil Pairing

Definition

For gcd(m, p) = 1 and $(S, T) \in \mathcal{E}[m] \times \mathcal{E}[m]$ let A, B be divisors with

•
$$\sum_{p\in\mathcal{E}} n_{AP}(P) = A \sim (S) - (\infty),$$

•
$$\sum_{p\in\mathcal{E}} n_{BP}(P) = B \sim (T) - (\infty)$$
, and

•
$$supp(A) \cap supp(B) = \emptyset$$
.

Let further $f_A, f_B \in \mathcal{E}(\overline{\mathbb{K}})$ such that $\operatorname{div}(f_A) = mA$ and $\operatorname{div}(f_B) = mB$.

Then the Weil pairing is defined by

$$e_W: \mathcal{E}[m] \times \mathcal{E}[m] \to \mu_m: (S, T) \mapsto \frac{f_A(B)}{f_B(A)},$$

where $f_A(B) = \prod_{P \in \text{supp}(B)} f_A(P)^{n_{BP}}$ and similar for $f_B(A)$, and $\mu_m \subseteq \mathbb{K}$ denotes the set of m^{th} roots of unity.

May 24, 2011 | 25 of 29

Comparison to Tate Pairing

- Tate pairing is much more complex to understand.
- Weil pairing has more restrictive conditions on curves (in theory).
- Weil pairing is twice as expensive as Tate pairing.
- Tate pairing maps to equivalence classes, not to single values.

Parameter Selection

- Let $q = p^i$ for $p \in \mathbb{P}$ and let \mathcal{E} be defined over \mathbb{F}_q .
- Let $m \in \mathbb{P}$ and let k be the least integer with $\mathcal{E}[m] \subseteq \mathcal{E}(\mathbb{F}_{q^k})$.
- Then $\mathcal{G}_1 = \mathcal{G}_2 = \mathcal{E}[m]$ and $\mu_m \subseteq \mathbb{F}_{q^k}$.
- m, k should be large enough for DLP to be hard in $\mathcal{E}[m]$ and \mathbb{F}_{q^k} .
- k should be small enough for computations in \mathbb{F}_{q^k} to be efficient.
- The smaller q, the shorter are elements of $\mathcal{E}[m]$.
- For 128 bit security: $m \approx 2^{256}$, $q^k \approx 2^{3072}$.
- Super-singular elliptic curves (q + 1 − #E(F_q) = 0 mod p) always have embedding degree ≤ 6.
- Elliptic curves for any k and any m can be generated using the Cocks-Pinch method.

Efficiency of Pairing Based Cryptography

• For 128 bit security one should (**very** roughly) use parameters such that:

	$ \log(q) $	$ P\in\mathcal{G}_1 $	$ R \in \mathcal{G}_2 $	$ T \in \mathcal{G}_T $
$\mathcal{G}_1=\mathcal{G}_2$	512	512	512	$6 \cdot 512$
$\mathcal{G}_1 \neq \mathcal{G}_2$	256	256	3 · 256	6 · 256

- Costs for computing pairings is of the same order as exponentiation (cubic).
- A single pairing costs as much as 4 to 20 mod-exps.

Things are Getting Better

CPU Cycles per Pairing

(all implementations optimized for optimal Ate pairing on Core i5/i7)

IOS Press 2008	10'000'000
LATINCRYPT 2010	4'380'000
PAIRING 2010	2'333'000
EUROCRYPT 2011	1'688'000