New Tricks for Coercion-Resistant E-Voting (from Jeremy Clark)

Rolf Haenni http://e-voting.bfh.ch

Seminar, E-Voting Group, BFH

March 25th, 2011

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

A Good Voting System

Correctness

- → Only authorized voters can vote
- → No voter can vote more than once
- → Valid votes can not be altered
- → All valid votes are counted
- Privacy
 - → Votes can not be linked to voters (not even with the help of the voters)
 - → No premature or partial results are revealed
- Verifiability
 - → Correctness is publicly verifiable

Coercion-Resistance

- Voters can not be urged (neither by offering a reward nor by intimidation) ...
 - → to vote in a particular way
 - → to vote at random
 - → not to vote at all
 - → to give away private keying material
- Coercion-resistance means that the adversary can not decide whether a voter complies with the demands [JCJ05]

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

Introduction

- Original protocol from 2005
 - A. Juels, D. Catalano, and M. Jakobsson

Coercion-resistant electronic elections. WPES'05, 4th ACM

Workshop on Privacy in the Electronic Society, 2005

 Offers correctness, privacy, verifiability and coercion-resistance under realistic assumptions

- → Untappable (offline) channel during registration
- → Sender-anonymous channel for vote casting
- → Public bulletin board
- → Majority of trustworthy authorities (registrars, talliers)
- Problems
 - → Quadratic-time tallying procedure (w.r.t. number of votes)
 - → Unrestricted number of votes (board flooding attacks)
 - → Secure platform

Setup and Registration

Setup

- \rightarrow ElGamal cryptosystem with public parameters p, q, g
- → Key pair for registrars (common public key, shared private key)
- → Key pair for talliers (common public key, shared private key)
- → Candidate list C
- Registration
 - \rightarrow Registrars jointly determine at random secret credential σ_i
 - → Voter obtains σ_i from registrars (upon proof of eligibility)
 - → Registrars publish $S_i = E(\sigma_i)$ on bulletin board
 - \rightarrow Registrars prove towards voter correctness of S_i

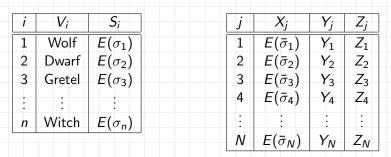
Registration Board

- The public registration board results from the registration phase
- Example with n voters

i	Vi	Si
1	Wolf	$E(\sigma_1)$
2	Dwarf	$E(\sigma_2)$
3	Gretel	$E(\sigma_3)$
:	:	:

n Witch $E(\sigma_n)$

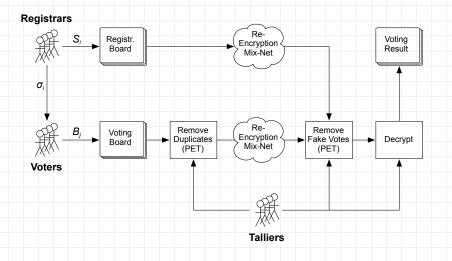
Vote Casting


Voter posts ballot B_j = (X_j, Y_j, Z_j) to public voting board through anonymous channel

$$\rightarrow X_i = E(\sigma_i)$$

- \rightarrow $Y_j = E(c_j)$ for candidate choice $c_j \in C$
- → Z_j = NIZKP of knowledge of σ_j and $c_j \in C$
- To deceive the adversary, a coerced voter ...
 - \rightarrow selects a fake credential $\sigma'_i \neq \sigma_j$
 - → follows the coercer's instructions
 - \rightarrow secretly casts the proper vote using σ_i

Voting Board


- At the end of the voting period, the voting board may contain three types of invalid votes containing . . .
 - → invalid NIZKP
 - → duplicate credentials
 - → fake credentials
- Example with n voters and N votes

Tallying

- Votes with invalid NIZKP are removed
- ► To remove duplicates, talliers perform O(N²) many plaintext equivalence tests (PET) for all distinct pairs (X_j, X_k)
- ► To remove fake votes, talliers perform O(n·N) many PETs for all remaining pairs (S_i, X_j)
- To sustain privacy, both the S_i and the (X_j, Y_j) lists must be shuffled in a verifiable re-encryption mix-net
- The remaining values Y_j are decrypted and counted
- The whole procedure runs in $\mathcal{O}(N^2)$ time

Protocol Overview

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

Removing Duplicates

- Setup: as before
- ► Registration: as before, but the registrars publish S_i = E(g^{σ_i}) instead of S_i = E(σ_i)
- ▶ Vote casting: $B_j = (X_j, Y_j, Z_j)$ as before, but

$$\rightarrow X_j = g^{\sigma_j} \text{ instead of } X_j = E(\sigma_j)$$

- \rightarrow Z_j includes modified NIZKP of knowledge of σ_j
- Tallying: ballots with identical values X_j are removed (keep the most recent one)
 - → runs in linear time
- Problem: Ballots can be linked across multiple voting events

Modified Voting Board

Voting Event 1: n voters and N votes

	Vi	Si	j	X_j	Y_j
L	Wolf	$E(g^{\sigma_1})$	1	$g^{ar{\sigma}_1}$	Y_1
2	Dwarf	$E(g^{\sigma_2})$	2	$g^{ar{\sigma}_2}$	Y_2
	:	:		÷	÷
n	Witch	$E(g^{\sigma_n})$	N	$g^{\bar{\sigma}_N}$	Y_N

► Voting Event 2: *n*′ voters and *N*′ votes

i	Vi	Si	j	X_j	Y_j	Zj
1	Wolf	$E(g^{\sigma_1})$	 1	$g^{ar{\sigma}_1}$	Y_1	Z_1
2	Dwarf	$\frac{E(g^{\sigma_1})}{E(g^{\sigma_2})}$	2	$g^{ar{\sigma}_2}$	Y_2	Z ₂
÷	:	: :	÷		÷	÷
n′	King	$E(g^{\sigma_{n'}})$	N′	$g^{\bar{\sigma}_{N'}}$	$Y_{N'}$	$Z_{N'}$

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

Election Setup

- To solve the linkability problem, an Election Setup phase is introduced between registration and vote casting
- The trick is to derive an electoral board from the registration board by switching the generator from g to \hat{g}
- Idea: perform the "SH10-Trick" (without shuffling)
 - \rightarrow Initialize $\hat{g} := g$ and $\hat{S}_i := S_i$
 - → Each of *r* trustees selects a random value $\alpha_j \in \mathbb{Z}_q$
 - ightarrow ... and computes $\hat{g} := \hat{g}^{lpha_j}$ and $\hat{S}_i := \hat{S}_i^{lpha_j}$ (with NIZKP)
 - → Finally, $\hat{g} = g^{\alpha_1 \cdots \alpha_r}$ and $\hat{S}_i = S_i^{\alpha_1 \cdots \alpha_r}$ are published on the electoral board
 - \rightarrow Note that $\hat{S}_i = E(g^{\sigma_i})^{\alpha_1 \cdots \alpha_r} = E(g^{\sigma_i \alpha_1 \cdots \alpha_r}) = E(\hat{g}^{\sigma_i})$

Electoral Board

Voting Event 1: n voters and N votes

i	Vi	Ŝi	j	X_j	Y_j	Zj
1	Wolf	$E(\hat{g}_1^{\sigma_1})$	1	$\hat{g}_1^{ar{\sigma}_1}$	Y_1	Z_1
2	Dwarf	$E(\hat{g}_1^{\sigma_2})$	2	$\hat{g}_1^{ar{\sigma}_2}$	Y_2	Z_2
:	:	· · ·	:	÷	:	:
n	Witch	$E(\hat{g}_1^{\sigma_n})$	Ν	$\hat{g}_1^{\bar{\sigma}_N}$	Y_N	Z _N

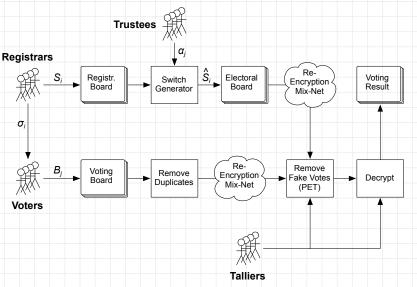
► Voting Event 2: *n*′ voters and *N*′ votes

i	Vi	Ŝi	j	X_j	Y_j	Zj	
1	Wolf	$E(\hat{g}_2^{\sigma_1})$	1	$\hat{g}_{2}^{\overline{\sigma}_{1}}$	Y_1	Z_1	
2	Dwarf	$E(\hat{g}_2^{\sigma_1}) \ E(\hat{g}_2^{\sigma_2})$	2	$\hat{g}_2^{\bar{\sigma}_2}$	Y_2	Z ₂	
÷	:	: I	:	1	:	÷	
n'	King	$E(\hat{g}_2^{\sigma_{n'}})$	N'	$\hat{g}_2^{\bar{\sigma}_{N'}}$	$Y_{N'}$	$Z_{N'}$	

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates


Trick 2: Election Setup

Trick 3: Removing Fakes

Anonymity Set

- Removing fake votes during tallying is based on random anonymity sets
- During vote casting, each voter j
 - \rightarrow computes $\hat{S}'_j = ReRandomize(\hat{S}_j, r_j)$
 - ightarrow selects randomly $S \subseteq \{\hat{S}_1, \dots, \hat{S}_n\}$ s.t. $\hat{S}_j \in S$ and |S| = eta
 - → generates NIZKP that \hat{S}'_j is a re-randomization of 1-out-of- β elements of S
 - $ightarrow \hat{S}'_j$ and NIZKP are added to ballot: $B_j = (X_j, Y_j, Z'_j, \hat{S}'_j)$
- During tallying, ballots $PET(X_j, \hat{S}'_j) = false$ are removed
 - → runs in linear time
- Disadvantage: expensive proof left to voters (if β is large)

Protocol Overview

Introduction

The JCJ Voting Protocol

Trick 1: Removing Duplicates

Trick 2: Election Setup

Trick 3: Removing Fakes

Conclusion

- Linear-time removal of duplicates without Smith/Weber
- Linear-time removal of fake votes with anonymity set of size β, re-encryption of S_j, 1-out-of-β NIZKP
- Board flooding attacks are still possible
- More details available in:
 - J. Clark and U. Hengartner
 - Selections: Internet Voting with Over-the-Shoulder Coercion Resistance.

FC'11, 15th International Conference on Financial Cryptography and Data Security, St. Lucia 2011

Clark's solution includes "Panic Password System" on top