Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Thoughts on JCJ05

Reto E. Koenig

Swissvote

15. April 2010

・ロト ・回ト ・ヨト

æ

< ≣ ▶

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

What it is all about

For an e-voting system to be secure, it has to function without vulnerabilities in potentially insecure environments such as the internet. For this, it has to be implemented according to an intrinsically secure design. Despite the complexity of designing and implementing such a system, some criteria seem to be unanimously accepted as the <u>core security requirements</u> for e-voting systems.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Accuracy: if casted votes can not be altered (<u>integrity</u>), valid votes can not be eliminated from the final tally (<u>completeness</u>), and invalid votes are not counted in the final tally (<u>soundness</u>).

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00			

Accuracy: if casted votes can not be altered (<u>integrity</u>), valid votes can not be eliminated from the final tally (<u>completeness</u>), and invalid votes are not counted in the final tally (soundness).

Democracy: if only authorized voters can vote (eligibility) and eligible voters can only vote once (uniqueness).

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Accuracy: if casted votes can not be altered (<u>integrity</u>), valid votes can not be eliminated from the final tally (<u>completeness</u>), and invalid votes are not counted in the final tally (soundness).

Democracy: if only authorized voters can vote (eligibility) and eligible voters can only vote once (uniqueness).

Privacy: if no casted vote can be linked to its voter, neither by voting authorities nor anyone else (anonymity), and no voter can prove that he or she voted in a particular way (receipt-freeness).

A (1) > A (1) > A

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
What th	iis means: A sys	tem offers		
Accui	racy:			

Democracy: ...

Privacy: ...

Verifiability: individually verifiable if voters can independently verify that their own votes have been counted correctly in the final tally and <u>universally verifiable</u>, if everyone can do that.

A⊒ ▶ ∢ ∃

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Accuracy: ...

Democracy: ...

Privacy: ...

Verifiability: individually verifiable if voters can independently verify that their own votes have been counted correctly in the final tally and <u>universally verifiable</u>, if everyone can do that.

Fairness: if no intermediate results can be obtained before the voting period ends.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

E-Banking < E-Voting

What makes E-Banking so easy and E-Voting so hard:

E-Banking: ctrl-z A wrong transaction can be undone (no privacy)

E-Voting: ctrl-z A wrong transaction can not be undone (privacy)

E-Banking The bank wants to have a trustworthy system

E-Voting The party in power wants to stay in power

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Enemies of an E-Voting system

- Voters
- External parties
- Internal parties
- The party that rules the country
- The men running the e-voting system

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

How to gain Power	
Buy	
 Bribe 	
 Coerce 	

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Requirements	Introduction 00	Coercion	Coercion Resistant Protocols	Things
But 200	5 privacy and C	oercion-Resist	tance has been redefined:	
Privacy	< Coercion-Res	istance		
pri	-	voting proces	es the voter (passively) du ss, the voters will should n	-
coercior		ng the voting	actively interacts with the process, the voters will sho	buld
	either the obser I the voters will	ver / coercer	nor the voter should be a	able

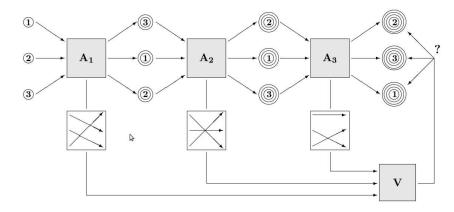
・ロン ・四シ ・ヨン ・ヨン 三日

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Grail-Elements

Homomorphic calculations E-Voting systems based homomorphic schemes were introduced in 1994 by Benaloh and Tuinstra

æ


Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Grail-Elements

Homomorphic calculations E-Voting systems based homomorphic schemes were introduced in 1994 by Benaloh and Tuinstra

Non-Transferable-Verifiability An important security aspect within E-Voting systems: Voter can not prove the will on the casted vote to a third party. (Also known as receipt). First working system showed in 2000 by Hirt and Sako.

Requirements	Introduction ●○	Coercion	Coercion Resistant Protocols	Things
Hrt00				

æ

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00			
Hrt00				

Unacceptable Constraint

• The system requires an untappable channel ^a...

^aphysically secure; not achievable by cryptographic means

A ►

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00			
Hrt00				

Unacceptable Constraint

- The system requires an untappable channel ^a...
- ...during voting phase.

^aphysically secure; not achievable by cryptographic means

r 🖓

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00			
Hrt00				

Unacceptable Constraint

- The system requires an untappable channel ^a...
- ...during voting phase.
- not coercer resistant

^aphysically secure; not achievable by cryptographic means

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00		000000000000000	

Forced abstention You shall not vote

・ロト ・日・ ・ヨト

3

- ∢ ⊒ ▶

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Forced abstention You shall not vote

To Render the System Coercion Resistant

• The system has to disable the voter to prove the act of a vote casting to a third party.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00		000000000000000	

Forced abstention You shall not vote

Forced Randomization You shall vote like a dice

포 🛌 포

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Forced abstention You shall not vote

Forced Randomization You shall vote like a dice

To Render the System Coercion Resistant

- The system has to disable the voter to prove the act of a vote casting to a third party.
- The system has to allow the voter to fake-vote (not to be confused with re-vote)

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Forced abstention You shall not vote

Forced Randomization You shall vote like a dice

Forced Simulation / Impersonation I am You

< 🗇 🕨

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Forced abstention You shall not vote

Forced Randomization You shall vote like a dice

Forced Simulation / Impersonation I am You

To Render the System Coercion Resistant

- The system has to disable the voter to prove the act of a vote casting to a third party.
- The system has to allow the voter to fake-vote (not to be confused with re-vote)
- The system has to allow the voter to distribute false identity-mark (credentials)

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

In 2005 Jules, Catalano and Jakobsson introduced a system providing the following:

Grail-Elements

• Homomorphic calculations

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

In 2005 Jules, Catalano and Jakobsson introduced a system providing the following:

Grail-Elements

- Homomorphic calculations
- Non-Transferable-Verifiability

A ■

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

In 2005 Jules, Catalano and Jakobsson introduced a system providing the following:

Grail-Elements

- Homomorphic calculations
- Non-Transferable-Verifiability
- Coercion resistant

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			0000000000000000	
Setup				

R Registration Authority (multiple instances)

^aThe sender can verify (designated), The receiver does not know the origin b The sender looses track, the receiver is allowed to know the sender

A⊒ ▶ ∢ ∃

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			0000000000000000	
Setup				

- *R* Registration Authority (multiple instances)
- *T* Tallying Authority (multiple instances)

^aThe sender can verify (designated), The receiver does not know the origin ^bThe sender looses track, the receiver is allowed to know the sender

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			0000000000000000	
Setup				

- *R* Registration Authority (multiple instances)
- *T* Tallying Authority (multiple instances)
- V_i Voter i

^aThe sender can verify (designated), The receiver does not know the origin b The sender looses track, the receiver is allowed to know the sender

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000	
Setup				

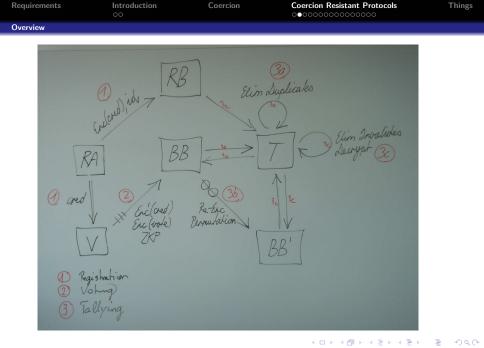
- *R* Registration Authority (multiple instances)
- *T* Tallying Authority (multiple instances)
- V_i Voter i
- **BB** Bulletin Board (multiple instances)

^aThe sender can verify (designated), The receiver does not know the origin ^bThe sender looses track, the receiver is allowed to know the sender

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000	
Setup				

- *R* Registration Authority (multiple instances)
- T Tallying Authority (multiple instances)
- V_i Voter i
- **BB** Bulletin Board (multiple instances)

AN Anonymous Net (Preserving 'shape' and temporal order)^a


^aThe sender can verify (designated), The receiver does not know the origin ^bThe sender looses track, the receiver is allowed to know the sender

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Setup				

- *R* Registration Authority (multiple instances)
- T Tallying Authority (multiple instances)
- V_i Voter i
- **BB** Bulletin Board (multiple instances)
- AN Anonymous Net (Preserving 'shape' and temporal order)^a

MN Mixed Net (changing 'shape' and temporal order)^b

^aThe sender can verify (designated), The receiver does not know the origin b The sender looses track, the receiver is allowed to know the sender

Requi		Introduction	Coercion	Coercion Resistant Protocols	Things
Proto	col-Description				
	General Prot	tocol descriptio	n		
	1. Setup	If not already a	available, key p	airs are generated by R and	
		T . The candid	late slate C is	published by R (or T) with	
		appropriate int	egrity protectio	on.	

Requirements	s In o	troduction O	Coercion	Coercion Resistant Protocols	Things
Protocol-Des	cription				
Ger	eral Prote	ocol descripti	on		
	1. Setup		idate slate	ey pairs are generated by R and C is published by R (or T) with ection.	
2. F	Registratic	individual bec	comes a regi permitting pa	ation of the id and eligibility, an stered voter <i>V_i</i> , receiving from <i>F</i> articipation in elections. <i>R</i> oll <i>L</i> on <i>BB</i>	2

Requi		ntroduction	Coercion	Coercion Resistant Protocols	Things
Proto	col-Description				
	General Prot	ocol descriptic	n		
	1. Setup	T . The candi		airs are generated by R and published by R (or T) with on.	
	2. Registratio	individual becc a credential pe	omes a registere	n of the id and eligibility, an ed voter <i>V</i> _i , receiving from <i>R</i> ipation in elections. <i>R</i> - on <i>BB</i>	
	3. Voting	Referring to <i>C</i> BB via anonyn		ntials V s cast their ballots to	

Requi		ntroduction	Coercion	Coercion Resistant Protocols	Things
Proto	col-Description				
	General Prot	ocol descriptio	n		
	1. Setup	-	late slate C is	airs are generated by R and published by R (or T) with n.	
	2. Registratio	individual beco	mes a registere rmitting partici	n of the id and eligibility, an ed voter <i>V_i</i> , receiving from <i>R</i> pation in elections. <i>R</i> , on <i>BB</i>	
	3. Voting	Referring to <i>C</i> BB via anonym		itials <i>V</i> s cast their ballots to	L
	4. Tallying	tally vector X	specifying the o	of <i>BB</i> so as to produce a putcome of the election, less <i>P</i> of the tally.	

Require		Introduction	Coercion	Coercion Resistant Protocols	Things
Protoco	l-Description				
	General Prot	tocol descriptio	n		
	1. Setup	-	date slate C is	airs are generated by R and published by R (or T) with on.	
2	2. Registrati	individual beco	mes a registere rmitting partici	n of the id and eligibility, an ed voter <i>V</i> _i , receiving from <i>R</i> ipation in elections. <i>R</i> . on <i>BB</i>	
	3. Voting	Referring to <i>C</i> BB via anonyn		ntials V s cast their ballots to	
	4. Tallying	tally vector X	specifying the o	s of <i>BB</i> so as to produce a outcome of the election, ness <i>P</i> of the tally.	
Ę	5. Verificatio	on Any player, v	whether or not	a participant in the election,	

can refer to BB, P and L to verify the correctness of the tally produced by T in the previous phase.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

Acceptable constraint

• The system requires an untappable channel channel ^a...

^aphysically secure; not achievable by cryptographic means

A ►

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

Acceptable constraint

- The system requires an untappable channel channel ^a...
- ...during registration phase

^aphysically secure; not achievable by cryptographic means

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				
Setup				
	R Key pair S	SK _R , PK _R is g	enerated; <i>PK_R</i> is published	d ^a
*Creat	ed on distributed	threshold mann	er	

^bCreated on distributed threshold manner

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			0000000000000000	
Protocol-Description				

R Key pair SK_R , PK_R is generated; PK_R is published^a *T* Key pair SK_T , PK_T is generated; PK_T is published^b

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

R Key pair SK_R, PK_R is generated; PK_R is published^a *T* Key pair SK_T, PK_T is generated; PK_T is published^b
[MN] Is set up

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

R Key pair SK_R , PK_R is generated; PK_R is published^a

T Key pair SK_T , PK_T is generated; PK_T is published^b [*MN*] Is set up

[AN] Is set up and keys of the servers are known

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

R Key pair SK_R , PK_R is generated; PK_R is published^a

T Key pair SK_T , PK_T is generated; PK_T is published^b [*MN*] Is set up

[AN] Is set up and keys of the servers are known

BB Is set up

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			0000000000000000	
Protocol-Description				

1 V_i goes to (=untappable channel) the R and proofs eligibility

σ_i can be used for multiple voting-sessions

^aCreated on distributed threshold manner with multiple R^bL is maintained digitally signed on the bulletin board BB

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000000	
Protocol-Description				

- **1** V_i goes to (=untappable channel) the R and proofs eligibility
- **2** R generates String $\sigma_i \in_R G^a$

σ_i can be used for multiple voting-sessions

^aCreated on distributed threshold manner with multiple R^bL is maintained digitally signed on the bulletin board BB

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000000	
Protocol-Description				

- V_i goes to (=untappable channel) the R and proofs eligibility
- **2** R generates String $\sigma_i \in_R G^a$
- **③** V_i generates $S_i = E_{PK_T}(\sigma_i)$ and sends it to R

σ_i can be used for multiple voting-sessions

^aCreated on distributed threshold manner with multiple R^bL is maintained digitally signed on the bulletin board BB

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000000	
Protocol-Description				

- V_i goes to (=untappable channel) the R and proofs eligibility
- **2** *R* generates String $\sigma_i \in_R G^a$
- V_i generates $S_i = E_{PK_T}(\sigma_i)$ and sends it to R
- **③** *R* encrypts or re-encrypts $S_i = EPK_T(\sigma_i)$ and sends it to *R*

σ_i can be used for multiple voting-sessions

^aCreated on distributed threshold manner with multiple $R^{b}L$ is maintained digitally signed on the bulletin board BB

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000000	
Protocol-Description				

- V_i goes to (=untappable channel) the R and proofs eligibility
- **2** *R* generates String $\sigma_i \in_R G^a$
- **③** V_i generates $S_i = E_{PK_T}(\sigma_i)$ and sends it to R
- **③** *R* encrypts or re-encrypts $S_i = EPK_T(\sigma_i)$ and sends it to *R*
- So R puts id of V_i and S_i to the voter roll L^{b}

 σ_i can be used for multiple voting-sessions

^aCreated on distributed threshold manner with multiple $R^{b}L$ is maintained digitally signed on the bulletin board BB

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

• It is most important that the final S_i is not encrypted by V_i .

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

- It is most important that the final S_i is not encrypted by V_i .
- Otherwise V_i always could decrypt S_i to prove the valid σ (ElGamal Trapdoor 2)

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

- It is most important that the final S_i is not encrypted by V_i .
- Otherwise V_i always could decrypt S_i to prove the valid σ (ElGamal Trapdoor 2)
- If *R* re-encrypts *S_i* with a dedicated proof, it is absolutely essential...

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

- It is most important that the final S_i is not encrypted by V_i.
- Otherwise V_i always could decrypt S_i to prove the valid σ (ElGamal Trapdoor 2)
- If R re-encrypts S_i with a dedicated proof, it is absolutely essential...
- ... that V_i can get a proof for ANY credential in p-time (and within 'usability')

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

- It is most important that the final S_i is not encrypted by V_i.
- Otherwise V_i always could decrypt S_i to prove the valid σ (ElGamal Trapdoor 2)
- If *R* re-encrypts *S_i* with a dedicated proof, it is absolutely essential...
- ... that V_i can get a proof for ANY credential in p-time (and within 'usability')
- This problem-domain is discussed in Schweisgut07

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

c_j Candidate choice.

And not as expected $h = g_1^{S_T} g_2^{S_T}$

< □ > < □ > < □ > < Ξ > < Ξ > ...

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

- c_j Candidate choice.
- σ_i Credential of V_i .

And not as expected
$$h=g_1^{S_T}g_2^{S_T}$$

(a)

< ∃⇒

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

- c_j Candidate choice.
- σ_i Credential of V_i .

$$a_1, a_2 \in_R Z_q.$$

And not as expected
$$h=g_1^{\mathcal{S}_{\mathcal{T}}}g_2^{\mathcal{S}_{\mathcal{T}}}$$

・ロト ・日・ ・ヨト

< ∃⇒

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

 c_j Candidate choice. σ_i Credential of V_i . $a_1, a_2 \in_R Z_q$.

ElGamal Setup g1, g2

And not as expected $h = g_1^{S_T} g_2^{S_T}$

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

 c_j Candidate choice. σ_i Credential of V_i . $a_1, a_2 \in_R Z_q$. ElGamal Setup g_1, g_2 ElGamal private Key S_T

And not as expected $h = g_1^{S_T} g_2^{S_T}$

∂ ► < ∃

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

 c_j Candidate choice. σ_i Credential of V_i . $a_1, a_2 \in_R Z_q$. ElGamal Setup g_1, g_2 ElGamal private Key S_T ElGamal public Key: $h = g_1^{S_T}$.

And not as expected $h = g_1^{S_T} g_2^{S_T}$

▲ ▶ ▲ ●

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
Protocol-Description				

V voting

Candidate choice
$$E_1^{(i)} = (\alpha_1, \alpha'_1, \beta_1) = (g_1^{a_1}, g_2^{a_1}, c_j h^{a_1}),$$

 $NIZKPK$ of knowledge of c_j AND $c_j \in C.$
Voter Credential $E_2^{(i)} = (\alpha_2, \alpha'_2, \beta_2) = (g_1^{a_2}, g_2^{a_2}, \sigma_i h^{a_2})$
 $NIZKPK$ of knowledge of σ_i

 NIZKPK that α_i,α_i' have the same discrete log with respect to g_1 and g_2

 $1.\mathsf{NIZKPK}:$ Otherwise V can be forced to submit an observable invalid choice

2.NIZKPK: Makes it (non-malleable) impossible to validly copy an encrypted credential for *BB* for a new ballot

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

Vote casting

• V sends the vote to AN

^aThis restriction should be investigated with the goal of getting rid of it

æ

<⊡> < ⊡

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

Vote casting

- V sends the vote to AN
- AN sends the vote to BB

^aThis restriction should be investigated with the goal of getting rid of it

æ

A ■

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

Vote casting

- V sends the vote to AN
- AN sends the vote to BB
- In JCJ05 V is only able to read BB after the vote-casting phase is over.^a

^aThis restriction should be investigated with the goal of getting rid of it

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000	
Protocol-Description				

After-Thought *BB*

It seems as if BB can be made public all the time: After a vote-casting, the casted vote can be identified and the credential can be reconstructed and proven by the vote-sender. But no proof can be forced to show that the credential in question is a valid credential.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			00000000000000000000000000000000000000	
Protocol-Description				

Duplicate Vote Elimination

- T eliminates (pair-wise) votes with same credentials $(PET)^a$
- ZKPK for each action

^aIt marks the 'last' vote

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

MixNet-Re-Encryption-Shuffling

• MN shuffles re-encrypts the 'last' votes

< 4 ₽ > < 2

< ∃⇒

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

MixNet-Re-Encryption-Shuffling

- MN shuffles re-encrypts the 'last' votes
- A ZKPK for each re-encrypted vote proves its existence in the original 'last' vote list

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

MixNet-Re-Encryption-Shuffling

- MN shuffles re-encrypts the 'last' votes
- A ZKPK for each re-encrypted vote proves its existence in the original 'last' vote list
- If the size of the two lists are equal, this proves equality of the two lists.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

Elimination of Invalid Votes

- *T* eliminates votes with invalid credentials. Done by a (PET)^a with the Voter Slate
- ZkPK for each action

^aThreshold decryption

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			000000000000000000000000000000000000000	
Protocol-Description				

Decryption

- T decrypts each vote^a
- ZkPK for each action

^aThreshold decryption

< 🗇 🕨

æ

э.

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
			○○○○○○○○○○○○	
Protocol-Description				

Questions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

• ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to

know plaintexts)

・ロト ・回ト ・ヨト

æ

-< ∃ ►

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

• ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to know plaintexts)

•
$$(g^{r_1}, h^{r_1}m), (g^{r_2}, h^{r_2}m')$$
 with $m = m'$ where $h = g^s$

・ロト ・回ト ・ヨト

< E > E

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

- ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to know plaintexts)
- $(g^{r_1}, h^{r_1}m), (g^{r_2}, h^{r_2}m')$ with m = ?m' where $h = g^s$

•
$$(x_1/x_2, y_1/y_2) = (x_3, y_3)$$

- (日) (日) (日) (日) (日)

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00		000000000000000	

• ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to know plaintexts)

•
$$(g^{r_1}, h^{r_1}m), (g^{r_2}, h^{r_2}m')$$
 with $m = ?m'$ where $h = g^s$

•
$$(x_1/x_2, y_1/y_2) = (x_3, y_3)$$

•
$$dec(x_3, y_3) = y_3 x_3^{-s} = (g^s)^{r_3} \frac{m}{m'} (g^{r_3})^{-s} = \frac{m}{m'} = ?$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

< ≣ ▶

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00		000000000000000	

• ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to know plaintexts)

•
$$(g^{r_1}, h^{r_1}m), (g^{r_2}, h^{r_2}m')$$
 with $m = {}^? m'$ where $h = g^s$

•
$$(x_1/x_2, y_1/y_2) = (x_3, y_3)$$

•
$$dec(x_3, y_3) = y_3 x_3^{-s} = (g^s)^{r_3} \frac{m}{m'} (g^{r_3})^{-s} = \frac{m}{m'} = ?1$$

• Problem: PkZk only works if m = m' but fails otherwise

3

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things
	00		000000000000000	

• ElGamal $(x_1, y_1)(x_2, y_2)$ encrypt same plaintext? (Without wanting to know plaintexts)

•
$$(g^{r_1}, h^{r_1}m), (g^{r_2}, h^{r_2}m')$$
 with $m = ?m'$ where $h = g^s$

•
$$(x_1/x_2, y_1/y_2) = (x_3, y_3) \dots (x_3^z, y_3^z)$$
 where $z \in R$

•
$$dec(x_3^z, y_3^z) = y_3^z x_3^{-sz} = (g^s)^{r_3 z} \frac{m^2}{m'^z} (g^{r_3})^{-sz} = (\frac{m}{m'})^z = ?1$$

• Solution: PkZk works if m = m' and $m \neq m'$

◆ 御 ▶ ◆ 臣

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^{s}$$

ヘロン 人間 とくほど 不同と

2

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^{s}$$

• s distributed on $T = (T_1, ..., T_n)$ instances

æ

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^s$$

- s distributed on $T = (T_1, ..., T_n)$ instances
- Each T_j presents $z_j = x^{s_j}$, PkZk $\log_g(h_j) = \log_x(h_j)$

▲圖> ▲注> ▲注>

3

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^s$$

- s distributed on $T = (T_1, ..., T_n)$ instances
- Each T_j presents $z_j = x^{s_j}$, PkZk $\log_g(h_j) = \log_x(h_j)$
- I represents the set of T_j where verification(PkZk) = true

▲掃♪ ▲ 注♪

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^{s}$$

- s distributed on $T = (T_1, ..., T_n)$ instances
- Each T_j presents $z_j = x^{s_j}$, PkZk $\log_g(h_j) = \log_x(h_j)$
- I represents the set of T_j where verification(PkZk) = true

•
$$m = g^{-\alpha s} g^{\alpha s} m = (g^{\alpha})^{-\sum_{j \in I} l_j(0) \cdot s_j} h^{\alpha} m$$

< (27) > < 25 >

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

•
$$(x,y) = (g^{\alpha}, h^{\alpha}m)|h = g^s$$

- s distributed on $T = (T_1, ..., T_n)$ instances
- Each T_j presents $z_j = x^{s_j}$, PkZk $\log_g(h_j) = \log_x(h_j)$
- I represents the set of T_j where verification(PkZk) = true

•
$$m = g^{-\alpha s} g^{\alpha s} m = (g^{\alpha})^{-\sum_{j \in I} l_j(0) \cdot s_j} h^{\alpha} m$$

• This is feasible as long as $|J| \ge t$ where t is a certain threshold.

A (1) > A (1) > A

Introduction	Coercion	Coercion Resistant Protocols	Things

Threshold keyGeneration

986220914.pdf p. 59

イロト イポト イヨト イヨト

æ

irements	Introduction	Coercion	Coercion Resistant Protocols	Things

Thoughts on Anonymous Channel / Re-Voting

- JCJ05 allows multiple vote-casting by V_i
- JCJ05 needs the order of the entries in BB (latest vote wins)
- Therefore no mix-Net approach with shuffling allowed or...
- ... some 'encrypted' timestamp within the ballot which makes the vote traceable
- But multiple vote casting does not strengthen the system against a coercer
- Weber eliminates this by counting the first (temporal) vote only

Requirements	Introduction	Coercion	Coercion Resistant Protocols	Things

Shouldersurfing Resistance

- $\bullet\,$ JCJ05 allows ONE correct credential σ and 'unlimitted' fake credentials
- if the voting legitimation enc_T(σ) has to be calculated under observation...
- ...then Shouldersurfing resistance (over several Votings) requires that at least One correct and independent credential per Voting-session