Append-Only Web Bulletin Board

by
J. Beuchat, jose.beuchat@bluewin.ch
Bern University of Applied Sciences, Switzerland

Supervisor: Dr. E. Dubuis
Date : Feb 21, 2011

Abstract. During the last years, a large number of papers made
the assumption that append-only web bulletin boards were
available. Nevertheless there is no recognized method for the
construction of such a bulletin board.

In this paper we identify the requirements of an append-only
web bulletin board and present different candidates based on the
work of Heather & Lundin and the master's thesis of R.A. Peters.
We will see that a Web Bulletin Board alone is not enough. For
security reasons and to avoid problems related to hardware,
distributed boards and replication of the data are necessary.
Finally, the candidates will be compared and the most suitable
solutions will be designated.



Contents

1 INEFOAUCHION. ...ttt e 3
2 The Web Bulletin Board...........ccoviiiiiiiiiiiiicc s 4
2.1 ReqQUITEIMENLS. ..ot e 4
2.2 ASSUIMPLIONS.....viiiiiieiieiietete bbbt 4
2.3 ACHOTS. .ttt er e 4
2.4 APPLCALIONS. ...t 5
241 E-VOINZ..oviviiiiiiiiiiiicit sttt ea e 5

2.4.2 AUCHONS. ..ottt e 5

2.4.3 Auditable discussion boards.............cccciiiiiiiiiiii 5

2.4.4 SYSEEIMN LOGS. ....oviiiiiiciicceccc et s 5

2.4.5 Online PetitioNs........ccccviiveviiiiiiiiiiiiiiecc s 5

3 Security MEeChANISINS. ........c.oviiiecieie ettt 6
3.1 Threshold SIgNatUIEs.........ccccccuiiiiiiiiiiiiiiic e 6
3.1.1 Trivial Threshold Signature............cccccoceuiiiiiiiiiiiiicececcee e 6

3.1.2 Pedersen's Threshold Signature............cccoviiiiniiiiiiiiiiic e 7

3.1.3 Threshold Signatures Based on Gap Diffie-Hellman Groups...........cccocveueieiiinieieieninnnes 7

3.1.4 CONCIUSION. ..ot 8

4 Candidate SOIULIONS. ........ceviviiiiiiiiic e 9
4.1 Trivial Web Bulletin Board............cccooiiiiiiiiiii s 9
41T HISTOTY vttt 9

4.1.2 Reading ProtoCOL..........ccciuiiiiiiiiiiiiiiiiiiiii e 10

4.1.3 WIiting ProtOCOL......ccoviiiiiiiriiiiiciccrececerce et 11

4.1.4 CONCIUSION.......oviiiiiiiiiicicic e 11

4.2 Synchronized Web Bulletin Board............co.ooiiii 12
4.2.1 Reading ProtocoL..........ccciiiiiiiiiiiiiiiiiicccc s 12

4.2.2 WIiting PrOtOCOL......cooviiiiiiiiiiiicirieccccecce et 13

4.2.3 TIMESLAIMNIPS. ...ceciviviiiiniiiiniiicc e s 14

4.2.4 DeadloCks......c.coviiiiiiiiiiiii e 14

4.2.5 CONCIUSION. ....ciiiiiiiiiiii bbb 14

4.3 Unsynchronized Web Bulletin Board............ccccoevuiiiiiriiiiiiiiniiirncecereeeeeeeeeeeeees 14
4.3.1 Reading ProtoCOL......ccccoiiiiiiiiiiiiiiicii s 15

4.3.2 Writing ProtOCOL......c.cuoiieeciiect s 15

4.3.3 CONCIUSION......ciiiiiiiiciici bbb 15

4.4 Krummenacher's Web Bulletin Board..........cccccoviiiiiniiiiiiiiccene, 16
4.4.1 Reading ProtOCOL......ccoiiiiiiiiiiiiiiiic s 16

4.4.2 WIiting PIrOtOCOL......cuoviiiiecicicct e 16

4.4.3 CONCIUSION......ciiiiiiriiiciitc bbb 17

4.5 Peter's Web Bulletin Board..........ccooviiiiiiiiiiiiiiccc e 18
4.5.1 ProtOCOl LaYers........cocciiiiiiiiiiiiiiiccic s 18

4.5.2 Secure Group Membership Protocol...........ccooiiiiiicce 19

4.5.3 Rampart ProtoCOL..........ccovviiiiiiiniiiiiiiiiiiiicci e 22

4.5.4 Synchronized Atomic Multicast Protocol..........ccccceiueuiiiiiiiiiiiiiiincnceeenee 24

4.5.5 Reading ProtoCOL......ccccciiiiiiiiiiiiici s 25

4.5.6 WIiting ProtOCOL......c.cuoiiiecici s 25

4.5.7 CONCIUSION. ....cviiiiiiiiicic bbb 26

5 EVAIUALION. ..ot 28
6 CONCIUSION. ...ttt a s a et n e bt ens 29



1 Introduction

More and more data are published on the Internet everyday. Those are accessible to everyone
but how can we ensure that the displayed content hasn't been modified? In serious contexts
(e.g. e-voting) it is essential to prove that the published data haven't been altered.

Using a Web Bulletin Board, we can ensure that the users will be able to post messages and have
the assurance that they will never be changed, moved or deleted. Also, the messages will be
available to everybody and every authorized user will be able to post.

Unfortunately, even if the existence of the Web Bulletin Board is broadly assumed, the
information about its requirements or a working solution remain poor.

The goals of this paper are to identify the requirements of a Web Bulletin Board, to determine
candidate solutions and to compare them. This will be realized on the basis of the two following
papers: The Append-Only Web Bulletin Board [1] by Heather & Lundin and A Secure Bulletin Board
[2] by Peters. In the first one, a trivial solution is clearly defined and hints about two distributes
boards are given. In the second paper, a board using existing protocols is described.

This report is organized as follows: first, the basic requirements, actors and possible
applications of a Web Bulletin Board are identified. Section 3 contains security mechanisms used
by the candidate solutions presented in Section 4. Then, a comparison between the different
candidates is done and finally, Section 6 is the conclusion.



2 The Web Bulletin Board

A Web Bulletin Board is responsible for publishing something (not necessary in e-voting context)
and giving the proof that its content has been altered.

2.1 Requirements

1. Availability. Each allowed user is able to successfully send messages to the board.
Similarly, everybody should be able to read and test the board.

2. Unalterable History. Once a message is published it should never be removed or
modified. Moreover, no message should be moved to another position and the new
ones should be placed at the end. If those properties are not respected, the users are
able to prove it.

3. Certified Publishing. If a Reader retrieves the content of the Web Bulletin Board, he will
have the proof for each message of who posted it and that the Writer intended the
message to be published with the stated timestamp and at this point in the board's
sequence of messages.

Those requirements should stay even if the Web Bulletin Board and a writer collude.

2.2 Assumptions
Many assumptions are needed in order to achieve our security requirements.

Assumption 21. Digital signatures can be verified by everybody but only the owner of the private key
is able to produce them.

Assumption 22. A solution to publish the public keys exist (e.g. PKI) so that all agents know the
public keys of all writers and all Web Bulletin Boards, but secret keys remain private.

Assumption 23. Each party is able to generate its own key pair.

Assumption 24. In the case where a threshold signature scheme is used, we assume that a threshold
key generation protocol is included.

Assumption 25. Communication between different parties is done using security mechanisms which,
when necessary, provide privacy, authenticity and integrity.

Assumption 26. If hash functions are used, they are collision-free. Two distinct terms will never
result to the same hash value.

Assumption 27. The Web Bulletin Board is responsible for ensuring that the metadata (signatures,
hashes, ...) are correctly generated by the writers.

2.3 Actors

Three types of actors exist. Some of them are active (modifying the data) and some are not:

Web Bulletin Board. The Web Bulletin Board is the history. It is responsible for allowing the
writers to publish information on the board and making them accessible to any of the readers
but is not allowed to post. The content of the messages (data and metadata) is verified by the
board itself before being added to its history. The Web Bulletin Board is also responsible for
ensuring that its content does not change and being able to detect it if it does.

Writer. The writer is active. He is the only user allowed to post information on the Web Bulletin

4



Board and is responsible for generating the necessary metadata (e.g. digital signature) to be sent
to the board. In an e-voting context he is the voter.

Reader. The reader isn't active but is still very important. Each time he reads the data, the
validity of the history is tested. Thus, the more readers there are, the more the content of the
board is tested and the better the security is.

2.4 Applications

2.4.1 E-voting

Voters want to be sure that their votes have been counted correctly and that they have the
possibility to revoke the vote otherwise. A Web Bulletin Board is responsible for publishing the
encrypted ballots and providing a receipt. At the end the votes are decrypted and published
(without anyone knowing the link from encrypted to decrypted votes). It is then possible to
count the decrypted ballots. To ensure that both parts correspond without linking them, zero-
knowledge proofs described in [3] are used. If a ballot is missing, the voter can prove it by giving
his receipt.

2.4.2 Auctions

A bidder who wishes to place a bid wants to receive a proof for it, otherwise anyone could
refute his bid. The sequence is very important here.

2.4.3 Auditable discussion boards

For many reasons, it could be interesting to provide a forum with a secure history.

2.4.4 System logs

Logs are system activities written in text files. It is useful to have security here if we do not trust
the logger.

2.4.5 Online Petitions

In the context of online petitions, security could be needed, for example, to prove that the text of
a petition hasn't been changed.



3 Security mechanisms

3.1 Threshold Signatures

Threshold signatures play an important role in the candidate solutions presented in Section 4.

The goal of a signature is to authenticate data. In distributed solutions (using more than one
party), the receipt (authentication of the data) is generated using a Threshold Signature scheme.
The difference with a normal signature is that several parties have to cooperate to generate a
valid signature. In a (tn)-threshold signature scheme, the private key is shared between n
parties so that t of them can jointly produce a valid signature. A Threshold Set is made of t parties
working together.

The three solutions presented here are the Trivial Threshold Signature, the Pedersen’s Threshold
Signature described in [4] and the Threshold Signatures Based on Gap Diffie-Hellman Groups
described in [5].

The main points are the key generation, the signature share construction, the signature share
combination and the signature validation.

3.1.1 Trivial Threshold Signature

In the Trivial Threshold Signature, the signature is a composition of t basic signatures, like those
used in non-distributed systems.

Key Generation

The keys are generated by the n parties themselves. They are responsible to create their own
key pairs and to publish their public keys. We do not use a dealer to generate and distribute the
keys, since it would create a Single Point Of Failure'.

Signature Share Construction

Each party signs the data to authenticate with its private key. A share here, is a signature like
those used in non-distributed systems.

Signature Share Combination

The combination here is nothing more than a list of shares and their corresponding public keys.
The signatures shares are regrouped, tested and inserted in the list. The receipt consists of x
different signatures, where t < x < n. The disadvantage is that the size of the signature is linear in
the number of participants.

Signature Validation

To validate the threshold signature, the shares have to be verified one by one using the public
keys. Once we tested at least t shares, we have the assurance that at least t parties signed the
message. Of course, a share should be only once in the list.

1 Part of a system which, if it fails, will stop the entire system from working.

6



Conclusion

This solutions meets our requirements and is easy to implement but the size of the threshold
signature raises linearly with #.

3.1.2 Pedersen's Threshold Signature

Pedersen’s Threshold Signature scheme[6] is based on Schnorr signatures[7] and Feldman's
Verifiable Secret Sharing Scheme (VSSS) [8].

Key Generation

Each party runs Feldman's VSSS [8] protocol to share a secret. Then, the party uses his share to
compute its own part of the private key and all the shares together compose the public key of
the Web Bulletin Board.

Signature Share Construction

Each party runs Feldman's VSSS protocol to generate a random global value known by
everyone involved in the protocol. Then, each party computes its own part of the signature
(signature share).

Signature Share Combination

Using the t signature shares, it is possible to compute the threshold signature. That means that
there will be only one signature in the receipt.

Signature Validation

Test the signature using the public key. If it is valid, we have the assurance that at least f parties
signed the message.

Conclusion

This solution meets our requirements. There is no trusted dealer and the receipt contains one
single signature, which is very small. This is a big advantage in comparison to the Trivial
Threshold Signature scheme presented in 3.1.1. This scheme is also considered as easy to
implement.

3.1.3 Threshold Signatures Based on Gap Diffie-Hellman Groups

This scheme, presented by Boldyreva, uses elliptic curves. For details, please refer to [5].

Key Generation

Each parties runs Feldman's VSSS to share a secret[7]. Then everyone involved in the protocol
will have a x;and a global y = " where x is determined by each t out of n parties.

Signature Share Construction

X

Given a message m, each party constructs the share s =H(m)".



Signature Share Combination

Using ¢ valid shares s,€A , compute the threshold signature s=1II,_,s;A ,; .

Signature Validation

Test the signature using the public key. If the signature is valid, we have the assurance that at
least t parties signed the message.

Conclusion

This solution meets our requirements. There is no trusted dealer and the receipt contains one
signature. The implementation is considered as complicated.

3.1.4 Conclusion
The three schemes presented here meet our requirements.

The Trivial Threshold Signature scheme is very easy to implement and to understand. Also it is
the only one that does not need a key generation protocol using a communication channel or
collaboration with other parties. Thus, it is perfect to be used in the set-up phase of the Web
Bulletin Board. However the receipt can be very large and performances are not optimal.

The Pedersen’s Threshold Signature contains only signature but the performances again are not
optimal.

Threshold Signatures Based on Gap Diffie-Hellman Groups contain one signature and provide good
performances. However, this scheme is complicated to implement.



4 Candidate solutions

In this Section we make the assumption that every party is honest and acting correctly. Five
solutions are presented with their main properties. Their strengths and weaknesses are

analyzed.

4.1 Trivial Web Bulletin Board

This solution is clearly defined by Heather & Lundin in [1]. It consists of one board which
directly communicates with all the Writers and Readers as represented in Figure 1.

ey
r

W Ar— _

Readers =

[ g | '

Web Bulletin Board
Writers

Figure 1: Trivial Web Bulletin Board architecture.

The Web Bulletin Board is public to everybody but only authorized Writers are allowed to post

messages.

4.1.1 History

The board stores a sequence of entries <wbb;, ..., wbb,> Those entries, also called the history,
contain the messages and the necessary metadata. Table 4 1 is a list of useful abbreviations and
notations. Table 4 2 represents the history:

Board.

Writer.

Message.

B:
W:

R: | Reader.
m:

T:

Timestamp at the time the Writer writes the message.

T': | Timestamp at the time the board signs the message.

H(.): | Hashing function.

H: | The hashed concatenation of m, T, W and H;;. H(m,;.T;. W;.H,,). Note that H=0.

H,: | The last entry of the history, also called the state of the board.

S(.): | Signing function.

WSign: | The hash value signed by the Writer: S,;(H;).

BSign: | The signed concatenation of WSign and T": Sg(WSign;.Ti').

Table 4 1: Useful abbreviations and notations.



m; Ti Wi Hi WSign, BSign,

m; T] W] H(m1T1W10) Sw1(H1) SB(WSigI'h.T]')
m; Tz W2 H(mz.Tz.Wz.Hl) Swz(Hz) SB(WSignz.Tz')

m, | To | W | Hm, ToWoHo) | Swa(H,) | Ss(WSign,.T,)

Table 4 2: History of the Board presented by Heather & Lundin.

We can see that H; is made of data coming from the actual entry as well as the H from the
previous entry. That leads to a concatenation of the data. Thus, new messages can only be
added at the end of the list and if some of them are modified, moved or removed, it will easily
be detected by anyone reading the history. That was the second requirement (Section 2.1).

A security parameter ¢ is introduced to define a maximal amount of time (some ms) during
which the messages can be received by the Writer and published. If the board receives the
message more than ¢ time after the Writer wrote it, it will be rejected. Furthermore, if a Reader
reads the history at time T and later a message with a timestamp T; smaller than T - £ appears,
that means that the board has been corrupted. That was part of the third requirement.

The history can be tested by anyone at anytime. It is called consistent if the following points are
true:

1. Hi=Hm:.Ti.W.H;,)

2. WSign; = Swi(H;)

3. BSign; = Sg(WSign,.Ti")
4. T,<T,/'<T +e

4.1.2 Reading protocol

The information on the board are public and thus everybody is allowed to read them. The
communication over the Internet (e.g. HTTP protocol) or the fact that for efficiency reasons,
readers may want to retrieve only part of the messages does not concern us here. We assume
that the whole list of messages is transferred.

read> —_—
/— «wbbi, ..., wbbw, Ha, Ts, Se(HA.TB)>

Figure 2: Reading protocol of the Trivial Web Bulletin Board.

10



1. R asks the content of the board in the read message.
2. B answers with its history and a proof that it is consistent and up to date.

The Reader can now test the consistence of the history. If later the history changes (e.g. a message
is removed at the end), he can prove that the board is corrupted by giving the signature
Sp(H.T).

4.1.3 Writing protocol

The protocol executed between the Writer and the Web Bulletin Board is presented in Figure 3.
We make the assumption that the digital signatures are always tested and if they are wrong, the

w B
ead——08
- H To SHT)
o T, W, H SoHp—our
« —— SW(H), T SuSW(H).T),

Figure 3: Writing protocol of the Trivial Web Bulletin Board.

process is stopped.

1. The Writer asks the status of the board.
B sends a signature of its status H, and a timestamp to W.

Wtests if T—T,>¢ .If not, he sends his message and the necessary metadata to B.

L

Btestsif T'—T>¢ .If not, it adds m to the history and sends the receipt to W.

The Writer finishes by testing if the receipt is well formed and makes sure that is message m has
been added to the history. If not, he knows that the board is corrupted. He also has to store both
messages received from the board, so that he later can prove that his message was published at
this position in the history.

If more than on Writer send a message at the same time, only the first one will be published. The
second will be considered as badly formed and rejected, since the H, does not correspond
anymore.

4.1.4 Conclusion

The Trivial Web Bulletin Board is made of one single board. Indeed if this one is corrupted or
unavailable (hardware problem, DOS? attack, ...), the whole system is unusable. There is a
Single Point Of Failure problem. We therefore can say that the first requirement (availability) is
not satisfied.

2 Denial Of Service: attempt to make a computer resource unavailable to its intended users.

11



This solution is based on mathematical algorithms. In other words, we do not need to trust the
Web Bulletin Board if enough Writers make sure that their messages are correctly published. The
Readers can also give more confidence by reading the content of the history and proving it if
something has changed. That is our second requirement (unalterable history).

The Reader who retrieves the list of messages will get something similar to Table 4 2. He thus
will know for each message, who wrote it, when and at which position. That satisfies the third
requirement (certified publishing).

The performances are good, since only one board is used and the amount of data transferred
and tested is very small.

The Trivial Web Bulletin Board is easy to understand and implement.

4.2 Synchronized Web Bulletin Board

To eliminate the Single Point Of Failure problem seen in the Trivial Web Bulletin Board, Heather &
Lundin propose to distribute the board in n parties of whom at most k can fail. However, their
description is very poor. In this Section, I present my own interpretation of a Synchronized Web
Bulletin Board.

e
f

( Q\S %Bo

Readers

e
g

Writers

Board n Board4
Board...

Figure 4: Synchronized Web Bulletin Board architecture.

Since there are more than one board and that some of them are possibly corrupted, we use
Threshold Signatures, presented in Section 3.1. The size of a threshold set is t=k+1, so that if k
boards are corrupted, they can not generate a signature. Also, to avoid two messages to be
published at the same time, t has to be bigger that the half of n. 2t>n .

4.2.1 Reading Protocol

During the reading protocol, one party is contacted. It asks ¢-1 others to generate a signature
share, confirming the state of the board, and sends it back to the Reader. Figure 5 describes the
protocol more in details.

12



W

read s

m «request -state, Ts1»

«wbb, .
S ThresholL(H/\B. TBI)>

PR —

B B

.., wbbo, «SBi(H . Th1)>

Figure 5: Reading protocol of the Synchronized Web Bulletin Board. B;:B,...B,.

1. The Reader asks the content of the boards to B..

2. Bjasks t other boards to generate a signature share, using Tp; and their status. Tp; has to
be sent so that the boards agree on an identical time value.

3. The boards B, receiving this request, test if Ty — T < ¢ . If so, they return a signature
share containing 15 and their status H,g;.

4. Since the boards are synchronized, the status H,z, should be the same everywhere. The
shares can thus be assembled by B;. The receipt containing the messages and a
threshold signature is returned to R.The reader can now test if the history is well formed

by reconstructing H,.

4.2.2 Writing Protocol

During the writing protocol, the Writer randomly chooses one of the #n boards (say B;), which
asks t-1 other parties to generate a signature share and publish the message. At the end, the
message is sent to the n-t other parties for publication and a receipt is sent to the Writer. The
receipt attest that ¢ of n boards published the message. This protocol represented in Figure 6.

W B, B B

<read >

T

«HA\ T,
S Thresholti{HA. TBI) >

P ——

an, T, W, H, Sw(H)»

«Sw(H),Ts1/,
S Thresholu(SW(H). TB1 ’) >

m, T, W, H, SW(H), TBI,, SThreshoh{SW(H).TBll)>
\

<request -state, 1>

<SBi(H/\Bi.TBI)>

an, T, W, H,
Sw(H), Ts1'>

«SBi(SW(H ). TB1')>

I

Figure 6: Writing protocol of the Synchronized Web Bulletin Board. B; is the threshold set: B, ... B,:

Bt+1...n~

13



1. The Writer asks the status of the boards. This is done similarly to the Reading Protocol.
2. After receiving the status, W sends his message m with the necessary metadata.

3. B request a signature share for this message, providing Ty;" to B;. Again, this has to be
done in order to get signature shares of the same content.

4. The t-1 other boards generate the shares and send them to B;, which combine them into
a Group-threshold signature (Section 3.1).

5. B; sends the message to the other boards and returns the receipt to W.

The Writer tests if the receipt is well formed and makes sure that is message m has been added
to the history. He also has to store both messages received from the board, so that he later can
prove that his message was published at this position in the history.

4.2.3 Timestamps

This approach uses timestamps, which have to be trusted by each party. Therefore we need an
external time server. Its only role is to send signed timestamps. Again, there is a risk of Single
Point of Failure. This problem would have to be carefully examined. Solutions exist but are not
developed here.

4.2.4 Deadlocks

In the protocol described in Figure 6, there is a risk of deadlocks and livelocks. If two Writers
start the protocol at the same time, two boards will ask different parties to sign and publish a
message at the same position and will never get the ¢ signatures share they are expecting. Of
course solutions exist to avoid deadlocks (e.g. timers), but they are difficult to implement and
costly. Furthermore, Writers who encounter this problem will have to restart the process and a
corrupted party could find a way to make the system unusable.

4.2.5 Conclusion

Using n boards, the Single Point Of Failure present in the Trivial Web Bulletin Board disappears
and the system does not stop even if some parties stop working correctly. The first requirement
(availability) is thus satisfied.

Since we use the same history as in the Trivial Web Bulletin Board, we know that unalterable
history and certified publishing are also provided.

The histories are the same at each board. Thus, the messages have the same order everywhere.
Group-threshold signatures are used, reducing the amount of data to be transferred and tested.

However deadlocks are problematic and even if solutions exist, their complexity and cost
represent a problem.

4.3 Unsynchronized Web Bulletin Board

Similarly to the Synchronized Web Bulletin Board, the Unsynchronized Web Bulletin Board is
distributed in # parties of whom at most k can fail.

However, here, the size of the threshold set () does not have to be bigger than n/2 anymore.
That gives now the possibility to create several threshold sets and to write several messages at
the same time. The consequence is that the histories are no longer the same everywhere. To
retrieve all the messages, we now have to read the content of at least n-t+1 boards.

14



The fact that the histories can be different leads to another problem: which value of H, should
the Writer use to construct his message? Heather & Lundin do not give any hint about that. The
solution presented below is based on my own interpretation.

4.3.1 Reading Protocol

In their paper, Heather & Lundin say that the Reader has to read at least n-k+1 histories. Leaving
k-1 boards unchecked is not a problem, because we know that a message is on at least one of the
n-k+1 other boards.

However, here, because we can not use Group-threshold signatures (reason explained in 4.3.2),
the messages have to be present on more than k boards to be counted. Indeed, if corrupted
boards publish fake messages, we have no other way to prove it. Thus, to get a consistent
history, we will have to read the n boards.

The basis of the reading protocol is similar tho the one in the Trivial Web Bulletin Board (Section
4.1.2).

4.3.2 Writing Protocol

Since the H, are different in each history, the Writer has to create a different message for each
board. In this solution, the protocol is started independently on i boards. The writing protocol is
exactly the same than the one presented in the Trivial Web Bulletin Board (Section 4.1.3).

o

[ g —

Writers

Figure 7: Writing protocol of the Unsynchronized Web Bulletin Board.

The value i should be bigger or equal to the threshold set t, so that W obtains ¢ different
signatures shares to create the threshold signature. Thus, k<t<i<n.

If a corrupted board does not runs the protocol correctly, the Writer is responsible to start it on
another board. This problem is known as the Byzantine agreement[9]. The boards independently
publish the messages without knowing if the other will do the same.

As the status of the boards (H,) are different everywhere, Group-threshold signatures are not
possible. Therefore we must use trivial threshold signatures (Section 3.1.1) with a different
private key for each board.

4.3.3 Conclusion

The Web Bulletin Board is distributed in n parties and no Single Point of Failure exists. Thus, the
first requirement (availability) is fulfilled.

15



Even if the content of the history is not identical at every party, the structure is the same than in
the Trivial Web Bulletin Board (see Table 4 2). Thus, the second and third requirements
(unalterable history and certified publishing) are fulfilled.

We can prove that no message has been moved, however, the histories can be different at each
party and giving a final order to the messages is impossible. This solution is thus not usable in
every cases (Section 2.4.2).

The parties do not communicate with each other and do not sign the same data. Thus, Group-
threshold signatures are not possible.

The responsibility to get enough signatures is on the Writer side. The board can not know if
enough parties are ready to publish the message and thus, if it should publish it or not. There is
no Byzantine agreement.

Since the protocols are similar to those presented in the Trivial Web Bulletin Board, this solution
can be considered as easy to implement.

4.4 Krummenacher's Web Bulletin Board

This solution, proposed in [10], is also based on the work of Heather & Lundin. It consists of a
Web Bulletin Board distributed in n parties of whom at most k can fail. Each party has its own
key pair and a part of a key used to generate threshold signatures. Threshold valueis t=k+1.

In his paper, Krummenacher introduces the possibility that a Web Bulletin Board contains more
than one history. Indeed if Web Bulletin Boards of different groups of interest are used, that
reduces their profit to conspire. Also, if each of them contains several histories, that reduces the
number of necessary Web Bulletin Boards.

4.4.1 Reading protocol

Similarly to the Unsynchronized Web Bulletin Board (Section 4.3), the content of the boards are not
the same everywhere. However, because we use Group-threshold signatures, we do not have to
test if the messages have been published on at least k+1 parties. Thus, the Reader has to read at
least n-k+1 histories.

The reading protocol is the same as the one presented in the Trivial Web Bulletin Board (Section
4.1.2).

4.4.2 Writing protocol

In this solution, the Writer starts the protocol on I boards, where [>t. In Figure 8, describing
the writing protocol, the histories are differentiated using an ID: ID;. The messages also have an
ID: ID,; and the boards identities are in a list <1,...,[>.

16



W B B,

read>

dIDwu,Hx,TB,
SBi(Hx.TBi)>

an, IDm, T, W, IDH,

Him.IDM.T.W.IDu.Hx),
Sw(Hi), <1,...,1» dDw,
Sv(H(m.IDm.T.W))>
«Sw(Hi), T’,

Sbl(SW(HZ)T/), LOCk(TimeOUt)
SThreshola(H(m IDwm.T. W)))

Figure 8: Writing protocol of Krummenacher’'s Web Bulletin Board. BBy, and
B;:B;..,j#i.

1. W asks the status of [ different boards.
B; answers with its status and a timestamp.

W sends his message and the corresponding metadata to the B,

Ll

After the reception of the previous message, B; sends to the I-1 other boards an
attestation, telling them that it will publish the message m if t-1 other boards to the
same. Then it locks itself. Using a timeout after the fourth message eliminates possible
deadlocks.

5. If the board B; does not receive t-1 attestations after some milliseconds, it releases the
lock and nothing is published. If it receives them, the message is published, the lock
released and the receipt containing the threshold signature is returned to W.

The fact that the boards wait to receive t-1 attestations before publishing the messages solves
the Byzantine agreement problem.
ID are used here, so that, the boards know with who they have to communicate.

4.4.3 Conclusion

Krummenacher's Web Bulletin Board is distributed and no Single Point of Failure is possible. Its
availability is thus assured and as in the Trivial Web Bulletin Board, unalterable history and
certified publishing are also provided.

Furthermore the system attests that a message is published on at least k+1 boards or not at all
and that the Writer gets a receipt only if his message has been published on at least k+1 boards.
There is a solution to the Byzantine agreement.

Group-threshold signatures are used, reducing the amount of data to be transferred and tested.

17



A solution to eliminate deadlocks has been found (using timers).

The order of the messages is not necessary the same on every board even if timestamps are
used.

The implementation of this solution can be considered as affordable.

4.5 Peter's Web Bulletin Board

This solution is based on the secure bulletin board of R.A. Peters [2]. It is an asynchronous
distributed protocol executed by several parties that tolerates the corruption of at most
[(n—1)/3| group members.

Since the bulletin board is composed of many parties, in addition to secure communications, we
need to be sure that if a message is received by one party, every other party receives the same
message in the same order. Furthermore, this has to stay true even if some parties are corrupted.

This problem is known as the Byzantine agreement[9]. The solution proposed here is a distributed
protocol based on [11].

Peter’s Web Bulletin Board uses together the Secure Group Membership Protocol (Section 4.5.2), the
Rampart Protocol (Section 4.5.3) and Threshold Signatures (Section 3.1).

The Secure Group Membership Protocol, gives the possibility to add or remove a party. Thus if a
board is corrupted or suffers from hardware problems, it can be removed and a new one can be
added.

4.5.1 Protocol Layers

As represented in Figure 9, each party runs a protocol organized in layers.

Applications

NZ

Synchronized Atomic Multicast Protocol

S

Atomic Multicast Protocol

5

Reliable Multicast Protocol

5

Echo Multicast Protocol

5

Secure Group Membership Protocol

NZ

Network

Figure 9: Protocol layers.

Network. The network is responsible for the communication between the different parties. It is

18



considered authenticated and confidential.

Secure Group Membership Protocol. It establishes a group view (set of supposed correct
members) and assures that it is the same at each honest party. It is also responsible for adding
and removing processes and delivering the corresponding new group views.

Echo Multicast Protocol. It enables a party to multicast a message to a certain view and ensures
that every honest party of this view delivers the same message.

Reliable Multicast Protocol. It ensures that all honest group members receive the same
messages, even in the face of malicious multicast initiators and ensures common group views.
Atomic Multicast Protocol. It adds the property that honest members deliver these messages in
the same order.

Synchronized Atomic Multicast Protocol. It ensures that members that have been offline for a
moment are able to synchronize all the messages.

Applications. This layer represents the applications using the bulletin board. For example, a
voting application that receives votes from clients and store them in a list.

4.5.2 Secure Group Membership Protocol

In this Section we describe the Secure Group Membership Protocol [12], a solution for
asynchronous distributed systems that tolerates the malicious corruption of group members.
This protocol gives the assurance that in a distributed system, the honest parties agree on a set
of currently operational members. It is possible to invite or remove parties in the group.
Furthermore, a malicious party cannot effect changes to the group or prevent a change to be
done.

Each party p; has a view V. which consists of the correct parties. The view can change and

each time it does x is incremented, representing the x-th view. Initially, each party is in view V*,
which is manually configured at each member. The protocol also ensures that each view is the
same at each honest party and that p receives V" before V¥ if x <y and p is in both.

For the correctness of this protocol we assume that at least [(2|V°|+1)/3] parties are correct.

This protocol is not concerned with the detection of corrupt group members but to remove
them from the group once detected.

Properties
The protocol satisfies the following four properties.

Uniqueness. If p; and p; are correct and V; and V; are defined, then V; =V . That means that

the x-th view is the same for every group member.

Validity. If p; is correct and V; is defined then p,€V; and for all correct p/EV;t , it holds that

V? is eventually defined.

Integrity. If p,eV\V"", then faulty(p;) held at some correct p,€V", and if p,EV\V" then
correct(p;) held at some correct p]EVx . This property prevents a view change to occur due to

one single party.

Liveness. If there is a correct p,€V" such that [(2|V*|+1)/3] correct members of V* do not

suspect p; faulty, and a p;€V" such that faulty(p;) holds at |(|V*|—1)/3|+1 correct members of

x+1

V*, then eventually V
holds at |(|V*|—1)/3]+1 correct members of V*, then eventually V
that if enough correct members agree about removing or adding a process, the membership is
eventually changed.

is defined. Similarly, if there is a member p,€V" and correct(p;)

*1 js defined. That means

19



Protocol

A total order is assumed to exist on the parties. In each V" there is a distinguished member

called the manager, which has the highest rank. The manager is responsible for suggesting an
update to the view. His suggestion is based on the recommendation of group members. The
protocol we consider here is represented in Figure 10.

csuggestinotifiy q >Kiyen TT——

proposal{ack po pKihyie» \

«commit{«<ready po q>kibers \w

PO P1 P2 P3

(manager)

/// ifi
// «notifiy qrxi
« |

<« [ <ack po gk

«— | <ready po g>ki

T

Figure 10: Protocol when the manager is correct.

The protocol executes as follow:

1.

2.

The group members suspecting a party ¢ to be faulty send (n0tifyq) k, to the manager.

The manager, say p; (or p, in Figure 10), collects the notification until it has
[(IVI|-1)/3]+1 of them. If that happens, it sends a suggestion (suggest{ (notifyq), }p/ep>

j

to the members of V.

When each party p; receives this message from the manager, it returns a signed

acknowledgment (ackp,q) k, to the manager.

Once the manager has [(2|V]|+1)/3] acknowledgment, it sends a proposal
<proposal{<ackpiq>l</}plep>

When p; receives the proposal, it verifies it and returns (ready p,-q>,</ indicating its

readiness to commit the update.

Once p; collects [(2|V}]+1)/3] ready messages it broadcasts a commit message
<c0mmit{<reudypiq>K/}p/€P>

20



7. A party p; that receives this message, installs the new view V;m by adding or
removing .

If the manager is suspected to be faulty, some party, called a deputy, may need to take over the
manager. A party p; which is not the manager, becomes a deputy if enough members suspect all
other members with a higher rank of being faulty.

1. If a process p; suspects all members with rank higher than p; it sends a message

(deputyp,); to p.

2. If p;receives [(|Vi|=1)/3|+1 messages it initiates the deputy protocol by broadcasting

(query|{deputy Pk }p/€p> to the members of V,TY . This messages proves that some

j

correct members believes that p; should become a deputy.

3. In response, each member p; returns (lastp;S) k, where S is the set of acknowledgments
contained in the last proposal sent by the previous manager or @ if it has not yet
received a proposal. The set S is returned to convey any update that could have been
committed by the manager or a deputy of a higher rank.

4. Upon receiving [(2|V}|+1)/3] last messages {<la5tpisj>l(]}pjep/ p: sends a suggestion
(suggest{{lastp;S;) ), p) to V7.

5. Each party forms the new view by removing the party suggested by the party with the
lowest rank.

A corrupted manager may try to convince one party of one update to the group view, while
having another party forming another view. Before a manager can propose a party to be
removed, it needs [(|V;|=1)/3|+1 signed requests, so at least one honest party wants p to be
removed. The manager then forms a proposal, using [(2 |Vf|+ 1)/3] signed ack responses.

Once a party signed a ack message, it refuses to sign ack responses for other parties. Since each
honest party only signs one proposal, and since a proposal needs [(2|V;|+1)/3] ack, a manager
can form at most one proposal.

We can think that a party receiving a correct proposal message has enough information to
update the current view. Only one correct proposal can be formed, and if that party broadcasts
this message, and every other party broadcasts it again, each party receives the proposal.
However, this does not work, since before the proposal message would arrive at every party, a
deputy may be chosen to remove the manager. Another situation could occur that some parties
remove the manager, and some follow the proposal message. To prevent this situation, the
manager first sends the commit message. Now if some party receives a commit message while
a deputy tries to remove the faulty manager, the deputy receives the proposal with its query
message, and then, follows that proposal instead of removing the manager. Agreement of the
group views is now maintained.

Joining Protocol
This section describes the protocol for a party joining the group.

The main difficulty is to determine the view in which the process is first a member. In the
previous protocol, a process p; installs V"' after receiving a message of the form
(commit{(ready pq)x },cp) for some P<V: where |P|=[(2|V]]+1)/3]. For p: to verify the
validity of this message, it must know the content of }*, because otherwise it is not able to,
e.g., determine if P is of the proper size or form. However a joining process may not know the
contents of V™. Thus, the joining protocol must take other measures to ensure that p; will install
aproper V.

21



The basis of the solution is that it suffice for p; to obtain the contents of some past group views

V' where y<x, and the commit messages sent in views y through x that tell it how to
transform )’ into ¥**'. To provide those commit messages, correct members maintain a
history’ set containing, for each prior view, a valid commit message sent in that view. Before a
correct member installs a new view, it sends its history to the new member p;

For the joiner's part of this protocol, it begins with obtaining some past group view V”. The
joiner then waits to receive a history message and, upon receiving one, extracts commit
messages and construct subsequent views V°, z>y. The joining process p, continues
accepting history messages and producing subsequent views to find the first view »**' that
contains its own identifier. It then installs ¥ and initiates the normal protocol for that view.

4.5.3 Rampart Protocol

The protocol used in Rampart implements a secure broadcast channel and is composed of
several layers: the Atomic multicast protocol, the Reliable multicast protocol and the Echo
multicast protocol. These three layers use the Secure Group Membership Protocol (Section 4.5.2) to
maintain a list of correct parties. This protocol is based under the assumption that at most
[([V*|-1)/3] are corrupt.

Multicast semantics

The Reliable Multicast Protocol ensures that these predicates hold:
— Integrity. For all honest p and m, an honest process executes R-deliver(p, m) in view x at
most the number of times that p sent R-mcast(m) in view x.
— Uniform Agreement. If g is an honest member of V** for all k>0 and an honest p
executes R-deliver(r, m) in view x, then g executes R-deliver(r, m) in view x.
— Validity-1. If p is an honest member of V* for all k=0, then p executes R-deliver(Vx,.)
—  Validity-2. If p and g are honest members of V*** for all k=0 and p executes R-mcast(m)
in view x, then g executes R-deliver(p, m) in view x.
The Atomic Multicast Protocols adds one additional property:
- Order. If g is an honest members of V** for all k>0 and an honest p executes A-
deliver(r, m) before A-deliver(r’, m’) in view x, then q executes A-deliver(r, m) before A-
deliver(r’, m’) in view x.

Echo Multicast Protocol

Considered as the core protocol, it ensures that the /-th message received from p for a view x is
the same at every honest parties. In the absence of membership changes, a reliable multicast
essentially reduces to a single echo multicast.

Using the interface E-mcast(x, m), a party in V* can multicast a message m to the members of V*.
A process delivers a message m for the view x from p by executing E-deliver(p, x, m).

If a party p wants to send a message to the view V*, it has to convince every party that it sends
the same m everywhere. To do that, it first sends a init message that each party will “echoes” by
digitally signing m and returning it to p. Once p receives |P|=[(2|V*|+1)/3| echoes for m it
sends them in a commit message to every members of V*. Each party has now the assurance
that the other received the same m.

3 Do not confuse the history message with the history of a Web Bulletin Board.

22



PO P1 P2 P3

<nit: x,f(m) \x

«— | cecho: po,x,Lfim)>k

«commit: po,x,m,

{<echo: po,x,Lf(m)>kilper> \x

Figure 11: Echo multicast.

The echo multicast protocol then executes as follows. Each pe V" maintains a set of counters
[ef }p <y, €ach initially zero, and a set commits® of messages, which is initially empty. Each
counter ¢; keeps track of the number of messages that have been E-delivered for view x from

pi, and is used to E-deliver messages from p; in FIFO order. The steps of the protocol are listed
below.

1. If E-mcast(x, m) is executed at some peV", p sends (init:x,f(m)) to each member of
V*, where f(m) is a hash function.

2. If p; receives (init:x,d) from some peV" and this is the I-th message of the form

(init: x,?) that p; has received from p, then p; sends (echo:p,x,1, d>,<’ to p.

3. Once the initiator p has received a set of echoes [lecho:p,x,1, f (m)>;</}p/ep for some [
and some pcv”® where |P|=[(2|V*]+1)/3], it sends

<C0mmitip,X,m,{<€Ch01plx,l,f(m)>;</}p’ep> to each member of V*.

4. If a process receives <00mmit1P,,xfm/{<€Ch01pl-, x/l/f(m)>[<]}p’ep> for some [ > Cf and
some PcV"* where |P|=[(2|V*|+1)/3], and if it has not received a view V?, y > x, such
that p;€V’, then it add this commit message to commits".

5. Whenever a process adds a message (commit:p,,..) to commits’, it repeats the
following step until it results in no more E-deliveries: if there is a message
(commit:p,,x,m,{{echo:p, x,1, f(m)) },cp) in commits” such that ¢;+1=I, then it

executes E-deliver(p, x, m) and sets ¢;«c;+1 .

After delivering the messages, it stays in the commits set until the message is stable. A message is
stable once every party added it to its commit set. Each party periodically notifies the other
parties of the messages in Commits by multicasting a message containing the c[p] values. Each
party records these values in a set c,[p’]. If a party has a message m from p’ with index [ in its
Commits set, and ¢,[p’] is at least [ for each p, the it concludes that m has been added at every
party, so it delivers m to a higher protocol layer and removes it from the Commits set. An honest

23



party does not permit a multicast to remain unstable for longer than a prespecified timeout
duration. That is, if a process g retains m in its commits* beyond some timeout duration after
executing E-deliver(p,x,m), it attempts to make this multicast stable by sending the commit to
each party which did not delivered it.

Reliable Multicast Protocol

It ensures that all honest group members deliver the same messages, even in the face of
malicious multicast initiators. It consists of two interfaces: R-mcast(m) and R-deliver(p;,m).

If the group view does not change, the reliable multicast protocol just relays messages between
the echo and the atomic multicast protocol using the E-mcast(x,m) and E-deliver(p;x,m) interfaces
of the Echo multicast protocol.

The reliable multicast protocol handles the following tasks : if a group membership change
occurs, the new messages must be sent for that new view and messages queue for the old view
must be cleaned. Then, the view change may be passed on to higher protocol layers.

When a message m has to be sent, it is echo multicasted in the latest view. The value of the
active and closed views are maintained, so that when this message is received, the protocol
verifies if the message is accepted. If it is intended for view x, it is delivered and if it is intended
for a later view, it is enqueued.

When a group membership change occurs, each party echo multicasts an end message to the
old view. This message signals that it is the last message it will send in the old view. After
receiving an end message from every party, each party sends a flush message to the new view,
containing the Commits set of the echo multicast protocol. This way, agreement is obtained on
the messages that have to be delivered in the old view.

No more messages is accepted for the old view. Once a flush message is received from every
party, the group membership change is announced to the other protocols.

If a party does not send an end or flush message in time, it is voted out. When a party is voted
out during another group membership change, we assume it sent an end message and an
empty flush message.

Atomic Multicast Protocol

It adds the property that honest members deliver these messages in the same order.

It consists of two interfaces: A-mcast(m) used to send messages to every parties, and A-
deliver(p;,m) is executed on each party when it receives m. The order is assigned using messages
broadcasted to the other parties.

It uses the reliable multicast protocol to multicast messages. Once a message m is received from
party p it is added to a queue. A designated group member, the sequencer, periodically sends an
order message indicating the order in which the messages are to be delivered.

If a new view is delivered, the atomic multicast protocol does not wait for an order message, but

deterministically chooses an order in which to deliver the queued messages.

If the sequencer is corrupted, he might refuse to send order messages or tamper with them. So, if
an honest party does not A-deliver a message within a predefined timeout period, it requests
the sequencer to be removed from the group.

4.5.4 Synchronized Atomic Multicast Protocol

Using the Atomic Multicast Protocol ensures that messages are received in the same order, but
members that have been offline for a moment do not receive all messages. This protocol enables

24



parties to synchronize the messages.

To synchronize, the party goes into the joining mode and multicasts a message request-hashes
with the number of messages it received before being voted out of the group. The other parties
send the hash of the messages that have been sent after that number. If p receives [(2|V*|+1)/3]
hashes, whom at least |(|V*|-1)/3]|+1 are the same since they come from honest parties. Party
p stores the hash of the missing messages requests the missing messages to another party,
randomly chosen.

Until p obtained the missing messages, it enqueues any new message to be executed by the
Atomic Multicast Protocol. After obtaining the missing messages, p delivers them and then
delivers the queued messages.

4.5.5 Reading Protocol

When a Reader reads all I messages, the following steps are executed:

W B, B,

<read-all, d>

T

<read-all-request, d>

SBi(H(«m1,...,mp).d) »

<<m1,...,mz>N—

Sthreshold H(«cm1,...,mp).d) >

Figure 12: Reading protocol of Peter's Web Bulletin Board.

R requests the history of B; (randomly chosen) and provides a nonce d.
B;multicasts the message.

Each B; computes a signature share using the messages and the nonce.
B; combines the shares into a threshold signature and sends it to R.

L e

B; multicasts the message to the other B; using the Synchronized Atomic Multicast protocol
(Section 4.5.4).

4.5.6 Writing Protocol

The Writer randomly sends his message to B;, which multicasts it to the group. Figure 13
describes the protocol:

25



W B Bi

<write, m»

T

<anit, x, H(m)»

cecho, B1, x, 1, H(m),

Ssi(echo.B1.x.I.H(m))>

«commit, p x, m,
STrhreshold(€Ch0.Bl.x.l.H(m))>

write-ack, Se(H(m))>
write—ack, S Threshold(H (m)) >

A

Figure 13: Writing protocol of the Peter’s Web Bulletin Board. Bi:all the parties but B. x:the view.
I:number of message B; received from B;.

W sends his message to B.

B;multicasts the hash of the message to the other boards.

Upon receipt, every party sends a signed echo message to B;.

After receiving the echo messages, B; combines the signature shares and sends a
commit message.

After B; receive the commit message, it publishes it and computes a signature share.

6. B finally combines the signatures shares and returns the receipt to W.

L e

o

If W does not receive a receipt after some time, it restarts the protocol with another board than
B;. We make here the assumption that each party checks the signatures, view number, etc.

B: multicasts the messages to B, using the Synchronized Atomic Multicast protocol (Section
4.5.4).

The difference with the protocol described in [11] is that we use threshold signatures. It does
not change the protocol itself but it considerably reduces the amount of data exchanged and
makes the signatures easier to test.

45.7 Conclusion

The Web Bulletin Board described by Peters is based on existing protocols. this point gives more
confidence in the system.

The first requirement, availability, is ensured using a distributed Web Bulletin Board. No Single
Point of Failure exists.

Since a receipt is returned to the Writer, he can attest that is message hasn't been altered. The

26



second requirement, unalterable history, is fulfilled.

The third requirement, certified publishing, is only partially respected. Even if the Writer signs
his message, no time value is given.

Using the Atomic Multicast Protocol, the order in which the messages are published is assured.
Group-threshold signatures are used, reducing the amount of data to be transferred and tested.

A weakness of this solution in comparison of the previous candidates is that the Reader has less
means to test the history. He has to trust the system and that at most |[(n—1)/3| group members
are corrupted.

Since the system is asynchronous and loosely coupled, deadlocks are avoided and timestamps
are not used. Therefore we do not need to deal with clock drifts and good performances are
provided.

Using the Secure Group Membership Protocol, it is possible to add or remove parties and Rampart
Protocol provides security and a solution to the Byzantine agreement.

The implementation can be considered as complicated.

27



5 Evaluation

A comparison between the different candidates described in Section 4 is done in Table 5 1, using
the requirements (Section 2.1) and other interesting properties.

2

—

«

Q.

4]

o 9

v ©

g7 e

o] I =t

& 8 -]

>, o1} o < & >

g g | o @ u | o 3 2

S| 218 = | = &| 8| g

@ = s ° = z v )

en I A = R I - T B A B

9 Q. @ ] > &0 o

>, -Q = %) 8 c © (¢ had

= e &~ & < IS RV L 2

S| 8| & 2| & B S| E|E

= = E| B 53| 5| 8§ =7

© < o o] s} ISt < N 179}

> = %} = = [} v > o

< 2| O] O O ~ A m ~
Trivial Web Bulletin Board . YES | YES | YES | NO | YES | YES

Synchronized Web Bulletin Board YES | YES

Unsynchronized Web Bulletin Board | YES | YES

Krummenacher's Web Bulletin Board | YES | YES YES | YES | YES

YES | YES . YES

Peter's Web Bulletin Board YES | YES

Table 5 1: Comparison of the different candidates.

In Table 5 1, we can see that the availability of the Trivial Web Bulletin Board is not ensured. If the
Web Bulletin Board is victim of a DOS attack or suffers from hardware problems, the system stop
working. This solution is thus to eliminate.

The Synchronized Web Bulletin Board is a possible solution which does not suffers from
availability problem, but deadlocks are difficult to eliminate and performances are weak.

In the Unsynchronized Web Bulletin Board, the fact that Group-threshold signatures can not be
used is a problem. A large amount of data have to be transferred and tested. Also, there is no
Byzantine agreement, the success of the writing protocol depends of the Writer.

The Krummenacher’s Web Bulletin Board is distributed, it uses Group-threshold signatures and
resolves the Byzantine agreement problem. The Reader is able to test the content of the board. The
difficulty of its implement is affordable and good performances are provided. Its major problem
is that it does not provide ordering of the messages but depending on what the Web Bulletin
Board will be used for, it is not important.

Peter's Web Bulletin Board is a distributed solution. Existing protocols like Rampart and the Group
Membership Protocol are used, providing the possibility to add or remove parties and good
security mechanisms assuring the consistence of the history. However, the Reader has less means
to test the content of the board than in the previous solutions and certified publishing is not
fulfilled. We have to be confident in the fact that less than [(n—1)/3] parties are corrupted. The
realization of Peter's Web Bulletin Board can be considered as complicated.

28



6 Conclusion

In Section 2, we saw that a Web Bulletin Board provides the ability to publish something and to
detect if its content has been modified.

The requirements of such a system have been described in Section 2. A Web Bulletin Board
should be available to anyone, no message should modified or moved to another position and
for each message we know who posted it.

Five candidate solutions, based on the work of Heather & Lundin and the master thesis of R.A.
Peter, have been presented in Section 4. Their architectures, reading and writing protocols are
described in detail.

Finally, in Section 5, we saw that two candidates (Krummenacher’'s Web Bulletin Board and Peter’s
Web Bulletin Board) can be considered as the best solutions. Even if they use different
mechanisms and are not suitable in every context, they both provide strong security and good
performances .

29



References

[1] Heather, J., Lundin D. The Append-Only Web Bulletin Board, 2009.

[2] R.A. Peters. A Secure Bulletin Board, 2005.

[3] Krantz, Steven G. Zero Knowledge Proofs, 2007.

[4] L.Harn. Group-oriented (tn) threshold digital signature scheme, 1994.

[5] Alexandra Boldyreva. Efficient threshold signature, multisignature and blind signature scheme based on the gap-
diffie-hellman-group signature schemes, 2002.

[6] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract), 1991.

[7] Claus P. Schnorr. Efficient identifications and signatures for smart cards., 1989.

[8] Paul Feldman. A practical Scheme for Non-Interactive Verifiable Secret Sharing, 1987.

[9] Leslie Lamport, Robert E. Shotsak, and Marshall C.Pease. The Byzantine generals problem, 1982.
[10] Roland Krummenacher. Umsetzung eines Web-Bulletin-Boards fiir E-Voting-Applikationen, 2010.
[11] Michael K. Reiter. Secure Agreement Protocols, 1994.

[12] Michael K. Reiter. A secure group membership protocol, 1996.

30



	1 Introduction
	2 The Web Bulletin Board
	2.1 Requirements
	2.2 Assumptions
	2.3 Actors
	2.4 Applications
	2.4.1 E-voting
	2.4.2 Auctions
	2.4.3 Auditable discussion boards
	2.4.4 System logs
	2.4.5 Online Petitions


	3 Security mechanisms
	3.1 Threshold Signatures
	3.1.1 Trivial Threshold Signature
	Key Generation
	Signature Share Construction
	Signature Share Combination
	Signature Validation
	Conclusion

	3.1.2 Pedersen's Threshold Signature
	Key Generation
	Signature Share Construction
	Signature Share Combination
	Signature Validation
	Conclusion

	3.1.3 Threshold Signatures Based on Gap Diffie-Hellman Groups
	Key Generation
	Signature Share Construction
	Signature Share Combination
	Signature Validation
	Conclusion

	3.1.4 Conclusion


	4 Candidate solutions
	4.1 Trivial Web Bulletin Board
	4.1.1 History
	4.1.2 Reading protocol
	4.1.3 Writing protocol
	4.1.4 Conclusion

	4.2 Synchronized Web Bulletin Board
	4.2.1 Reading Protocol
	4.2.2 Writing Protocol
	4.2.3 Timestamps
	4.2.4 Deadlocks
	4.2.5 Conclusion

	4.3 Unsynchronized Web Bulletin Board
	4.3.1 Reading Protocol
	4.3.2 Writing Protocol
	4.3.3 Conclusion

	4.4 Krummenacher's Web Bulletin Board
	4.4.1 Reading protocol
	4.4.2 Writing protocol
	4.4.3 Conclusion

	4.5 Peter's Web Bulletin Board
	4.5.1 Protocol Layers
	4.5.2 Secure Group Membership Protocol
	Properties
	Protocol
	Joining Protocol

	4.5.3 Rampart Protocol
	Multicast semantics
	Echo Multicast Protocol
	Reliable Multicast Protocol 
	Atomic Multicast Protocol 


	4.5.4 Synchronized Atomic Multicast Protocol
	4.5.5 Reading Protocol
	4.5.6 Writing Protocol
	4.5.7 Conclusion


	5 Evaluation
	6 Conclusion

