Chaum's Visual Crypto Scheme

Michael Schläpfer

Information Security Group ETH Zurich

09 June 2010

Michael Schläpfer

Outline

1 Introduction

- 2 Protocol functioning
- 3 Security properties
- 4 Conclusions

Goals

What do we want to achieve primarily:

- Integrity
- Secrecy
- Receipt-freeness

Introduction ○●		
Introduction		

Integrity E2E verifiability

- Individually verifiable:
 - Cast as intended
 - Recorded as cast
- Universally verifiable: All other phases

Security properties

Outline

1 Introduction

- 2 Protocol functioning
- 3 Security properties

4 Conclusions

Security properties

Protocol functioning

Overview

- A Voter enters choice and gets two receipts for which she is able to verify the correctness of the encryption visually
- B Voter chooses one receipt randomly. This receipt is published on a bulletin board
- C Talliers decrypt and mix the encrypted receipts

Security properties

Key idea

Let S = 1 and S = 0

■ Then we define a visual xor operation ⊕_v such that:

$$1 \oplus_{\nu} 1 = 0$$

$$0 \oplus_{\nu} 0 = 0$$

$$1 \oplus_{\nu} 0 = 1$$

$$0 \oplus_{\nu} 1 = 1$$

 Represent voter's choice as matrix of parity cells (visual representation of a bit string)

Parity cells. (Source: David Chaum)

An example. (Source: David Chaum)

Security properties

Protocol functioning

Protocol functioning Preliminaries

- Controlled voting booth used
- Voting machine holds three keys for:
 - Signing BSN (bottom)
 - Signing BSN (top)
 - Overall signing the entire receipt

- There exist two hash functions h and h', where h is public and h' (keyed) is only known to authority and official auditors (e.g. political parties)
- Every tallier holds a private key and the corresponding public key is public

Security properties

Protocol functioning

Protocol functioning Encryption

1 Voter's choice represented as $m \times n$ -matrix B

B is "checkerboarded" to bitstrings B^t and B^b of length $\frac{mn}{2}$

Security properties

Protocol functioning

Protocol functioning Encryption

2 2k pseudo random hash values v^t_i and v^b_i of length mn/2 are generated from the signed BSN (Ballot Sequence Number) using h

$$d_i^t = h'(v_i^t) \text{ and } d_i^b = h'(v_i^b)$$

$$W^{t} := \bigoplus_{1 \le i \le k} d^{t}_{i} \text{ and}$$
$$W^{b} := \bigoplus_{1 \le i \le k} d^{b}_{i}$$

In parallel, the top doll D^t and the bottom doll D^b are created for later decryption.
D^t :=

$$\{v_k^t, \{\cdots, \{v_2^t, \{v_1^t\}_{pk_1}\}_{pk_2} \cdots \}_{pk_{k-1}}\}_{pk_k}$$

Security properties

Protocol functioning

Protocol functioning Encryption

3 *B^t* and *B^b* are encrypted by bitwise xor-ing with the corresponding *W*:

$$\begin{array}{c} \mathbf{P}^t := \mathbf{B}^t \oplus \mathbf{W}^t \\ \mathbf{P}^b := \mathbf{B}^b \oplus \mathbf{W}^b \end{array}$$

Michael Schläpfer

Security properties

Protocol functioning

Protocol functioning Encryption

4 Reverse "checkerboard" B^t with W^b and B^b with W^t to the top layer L^t and the bottom layer L^b

Represent the layers with visual parity cells

Security properties

Overview

- A Voter enters choice and gets two receipts for which she is able to verify the correctness of the encryption visually
- B Voter chooses one receipt randomly. This receipt is published on a bulletin board
- C Talliers decrypt and mix the encrypted receipts

Security properties

Protocol functioning

Protocol functioning Vote casting

- Voter chooses layer randomly
- Voting machine signs BSN with the corresponding signing key
- Voting machine prints all this information on the chosen layer's receipt

- Voting machine signs with overall signing key:
 - Chosen layer L^x
 - BSN
 - Signed BSN
 - Dolls D^t and D^b
- Chosen receipt is scanned and published

Security properties

Protocol functioning

Overview

- A Voter enters choice and gets two receipts for which she is able to verify the correctness of the encryption visually
- B Voter chooses one receipt randomly. This receipt is published on a bulletin board
- C Talliers decrypt and mix the encrypted receipts

Protocol functioning	

Protocol functioning Tallying

Remember:

$$D := \{v_k, \{\cdots \{v_2, \{v_1\}_{pk_1}\}_{pk_2} \cdots \}_{pk_{k-1}}\}_{pk_k}$$

• *h*' known to authority (talliers) and $W := \bigoplus_{1 \le i \le k} h'(v_i)$

Outline

1 Introduction

- 2 Protocol functioning
- 3 Security properties
- 4 Conclusions

	Security properties	

Security properties

Voter is able to:

- Check the correctness of all the signatures printed on receipt
- Generate the k hash values v_i^x from the signed BSN
- Check the correctness of the doll D^x printed on his layer by sequentially encrypting hash values v_i^x with the public keys of the respective tallier i
- Check that the published receipt indeed corresponds to his receipt
- The tallying phase can be made universally verifiable

Security properties

Security properties

Security properties Secrecy

- Chaum claims "secure even if all used voting machines are corrupt"
- Agree on integrity
- Don't agree on secrecy!
- Possible solution is to "pre-encrypt" voters choice

Security properties

Security properties

Security properties Receipt-freeness

- Voter gets receipt for individual verification
- Receipt cannot be used to prove choice against third parties
- Receipt can be used to complain in case of failure (This property is often left out in considerations!)

Outline

1 Introduction

- 2 Protocol functioning
- 3 Security properties
- 4 Conclusions

Security properties

Conclusions

Adaption to Internet voting

- Voter needs an accurate printer that can print on transparent foils
- Voter needs a scanner
- Complicated procedure for home use
- User is in possession of the entire receipt (both layers!)

Conclusion:

Not applicable for Internet voting!

Conclusions

Further readings

- D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security & Privacy Magazine, Citeseer, 2004.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 1.1.123.7870&rep=rep1&type=pdf
- J. Bryans and P. Ryan. A dependability analysis of the Chaum digital voting scheme. University of Newcastle upon Tyne Technical Report Series CS-TR-809, 2003.http:

//www.cs.ncl.ac.uk/research/pubs/trs/papers/809.pdf