Technik und Informatik

Presention of Prêt à Voter

Stephan Fischli

Verifiable voting scheme based on idea of Chaum

- voter gets receipt of encrypted vote for verification
- multiple tellers perform anonymising mix on encrypted votes
- all steps are published on bulletin board
- random checks guarantee correctness

Reference

- David Chaum, Peter Y. A. Ryan, Steve Schneider A Practical, Voter-Verifiable Election Scheme

Process Overview

Election Setup

- Number of tellers ($0, \ldots, \mathrm{k}-1$) are appointed
- Each teller has two key pairs $\left(\mathrm{SK}_{2 i}, \mathrm{PK}_{2 i}\right)$ and $\left(\mathrm{SK}_{2 i+1}, \mathrm{PK}_{2 i+1}\right)$
- Authority creates large number of ballots and distributes them to the polling stations

Ballot Structure

Ballot Construction

- For each ballot generate unique random seed $=\left(g_{0}, g_{1}, \ldots, g_{2 k-1}\right) \quad$ (k number of tellers)
- Calculate cyclic offset of candidate list
$\theta=\sum \operatorname{hash}\left(g_{i}\right)(\bmod v) \quad(v$ size of candidate list)
- Calculate corresponding onion
D_{0} random
$D_{i+1}=$ encrypt $_{P_{K}}\left(g_{i}, D_{i}\right) \quad(i=0, \ldots, 2 k-1)$
Onion $=D_{2 k}$

Vote Casting

- Voter
- authenticates and registers at polling station
- selects a pair of ballots at random
- chooses one to fill in her/his choice
- destroys left-hand strip
- feeds right-hand strip to polling device and keeps it as a receipt
- Polling device digitally sends right-hand strips to central server
- Once voting has closed, right-hand strips are posted to public bulletin board

Tallying Overview

- Talliers perform anonymising mix and decryption of the encrypted ballots on the public bulletin board
- Each tallier accepts the output column from the previous tallier as input and produces a middle and an output column
- The emerging decrypted votes cannot be linked to the encrypted ballots

Tallying Calculation

- Represent the position of the voter's choice by an integer
$0 \leq r \leq v-1$
- Teller i-1 accepts output column ($r_{2 i}, D_{2 i}$) from teller i and
- strips off outer layer of the onion

$$
\left(g_{2 i-1}, D_{2 i-1}\right)=\operatorname{decrypt}_{\mathrm{SK}_{2 i-1}}\left(D_{2 i}\right)
$$

- calculates new r-value

$$
r_{2 i-1}=r_{2 i}-\operatorname{hash}\left(g_{2 i-1}\right)(\bmod v)
$$

- applies secret permutation on all pairs $\left(r_{2 i-1}, D_{2 i-1}\right)$ and posts result to middle column
- repeats process using second secret key $\mathrm{SK}_{2 i-2}$ and posts resulting pairs to output column
- First teller obtains decrypted position of the voter's choice

$$
r_{0}=r-\sum \operatorname{hash}\left(g_{i}\right)(\bmod v)=r-\theta(\bmod v)
$$

Checking on the Authority

- Voter casts a dummy vote
\rightarrow Tellers decrypt onion and return the vote
- Voter casts a ranking selection
\rightarrow Tellers return the candidate ranking
- Voter sends the onion
\rightarrow Tellers return corresponding candidate ordering
- Auditor sends the onion
\rightarrow Tellers return corresponding germs and auditor recomputes onion and offset value

Checking on the Voting Devices

- Each voter can visit the public bulltein board and compare the ballots with his/her receipt
- Digital signatures applied by the voting devices prevent fake votes

Checking on the Talliers

- Auditor assigns randomly R and L to each pair of the middle column produced by a teller
- For an R, the teller reveals the outgoing link with the corresponding germ, for an L the incoming link
- Auditor checks for any revealed link $\left(r_{i}, D_{i}\right) \rightarrow\left(r_{i-1}, D_{i-1}\right)$ that

$$
\begin{aligned}
& D_{i}=\operatorname{encrypt}_{P K_{i-1}}\left(g_{i-1}, D_{i-1}\right) \\
& r_{i-1}=r_{i}-\operatorname{hash}\left(g_{i-1}\right)(\bmod v)
\end{aligned}
$$

